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Protein and genetic interaction maps can reveal the overall
physical and functional landscape of a biological system. To
date, these interaction maps have typically been generated
under a single condition, even though biological systems
undergo differential change that is dependent on environ-
ment, tissue type, disease state, development or speciation.
Several recent interaction mapping studies have demon-
strated the power of differential analysis for elucidating
fundamental biological responses, revealing that the
architecture of an interactome can be massively re-wired
during a cellular or adaptive response. Here, we review the
technological developments and experimental designs that
have enabled differential network mapping at very large
scales and highlight biological insight that has been
derived from this type of analysis. We argue that differential
network mapping, which allows for the interrogation of
previously unexplored interaction spaces, will become a
standard mode of network analysis in the future, just as
differential gene expression and protein phosphorylation
studies are already pervasive in genomic and proteomic
analysis.
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Introduction

Physical and genetic interaction networks provide key insights
into complex biological systems, from how different processes
communicate to the function of individual residues on a single
protein (Beltrao et al, 2010). For instance, the systematic
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identification of pairwise protein interactions (Stelzl et al,
2005; Tarassov et al, 2008; Yu et al, 2008; Consortium, 2011) or
protein complexes (Butland et al, 2005; Gavin et al, 2006;
Krogan et al, 2006; Sowa et al, 2009) has been a widely used
strategy for understanding the physical architecture of the cell.
Other types of physical interactions that are being mapped
systematically include transcriptional protein-DNA interac-
tions (Ren et al, 2000; Iyer et al, 2001) and kinase-substrate
interactions (Ptacek et al, 2005; Linding et al, 2007). Genetic
networks, in contrast, chart pairs of genetic mutations that in
combination cause lethality or other phenotype—information
that complements the structural information provided by the
physical network (Tong et al, 2001; Roguev et al, 2007; Butland
et al, 2008; Typas et al, 2008; Horn et al, 2011). Large network
databases such as BioGRID, HPRD, IntAct, DIP and GeneMania
(Xenarios et al, 2002; Keshava Prasad et al, 2009; Aranda et al,
2010; Warde-Farley et al, 2010; Stark et al, 2011) record
hundreds of thousands of physical and genetic interactions
from a wide variety of organisms.

Despite all of this exciting prior work in network mapping, at
least one point stands out as remarkable: almost all physical
and genetic networks, to date, have been examined under a
single static (usually standard laboratory) condition. Biologi-
cal systems, however, are highly dynamic entities that must
continuously respond to a host of environmental and genetic
changes or can be altered more slowly over an evolutionary
period. It seems clear that if we are to develop a complete
understanding of cellular dynamics, fast, slow or evolutionary,
we must first understand how these dynamics effect, or are
affected by, changes in the underlying physical and genetic
networks.

Some understanding of the dynamics of large networks has
been achieved by integrating static interaction measurements
with dynamic changes in gene expression or metabolic fluxes
(Ideker et al, 2002; Luscombe et al, 2004; Sauer, 2004; de
Lichtenberg et al, 2005). These approaches seek to extract
interactions from the static network that appear to be active
under the new experimental conditions. However, these
approaches are, by definition, unable to identify new interac-
tions, complexes or pathways that are condition-specific, nor
can they distinguish between changes in network state and
changes in network wiring.

For this reason, an increasing number of studies have begun
analyzing the dynamics of physical and genetic networks
directly, through experimental mapping of networks across
multiple conditions, species or times. As their main goal, these
differential mapping approaches move away from charac-
terizing absolute properties of the system to concentrate on
a specific dynamic systems response. Rather than asking
‘What parts of the system are the most abundant or
dominant?’ they ask ‘What parts of the system are most
affected by perturbation?’

Differential interaction maps thus chart a new type of
interaction landscape that is fundamentally distinct from the
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original static networks. The strongest differential interactions
are not necessarily those that are strong in static conditions,
they are those that are most clearly changing. Conversely,
interactions present in both conditions are downplayed or
removed from the differential network. For physical networks
(protein-protein or protein-DNA), differential interactions
imply mechanistic changes that are a result of an organism’s
response to environmental conditions. For genetic networks
(synthetic-lethals or epistasis), interactions reflect functional
consequences of mutations, not direct physical mechanisms.
Thus, differential genetic interactions are a reflection of
which cellular processes are differentially important under
the studied condition.

In the remainder of this review, we summarize recent
experimental and bioinformatic approaches for charting the
dynamics of large physical and genetic interaction maps. We
illustrate parallels between differential analysis of networks
and previous differential analysis of a wide array of large-scale
data sets. In addition, we discuss recently proposed quanti-
tative methods for differential network analysis based on
subtraction of interaction scores across conditions. These
methods distinguish interactions that enable dynamic cellular
processes from those that support the housekeeping functions
of a cell.

Precedence for differential approaches in
biology

Conceptually, differential network analysis is very similar to
the way in which many other large-scale biological data types
are now analyzed (Figure 1). For example, mRNA differential
display and the two-color microarray revolutionized gene
expression analysis because these techniques permitted direct
comparison of two conditions and thus identification of
differentially expressed genes (Liang and Pardee, 1992; Schena
et al, 1995). A few years later, the microarray was adapted for

a very different type of differential analysis: competitive
growth phenotyping of barcoded mutations in budding yeast,
allowing for identification of genes that are required for growth
in certain conditions (Winzeler et al, 1999). In this same vein,
use of mass spectrometry to uncover differentially expressed
protein levels or protein post-translational modifications
under different conditions or species has provided unique
insight into the regulation of the cell (Gygi et al, 1999; Ong
et al, 2002; Aebersold and Mann, 2003; Linding et al, 2007;
Beltrao et al, 2009; Holt et al, 2009; Tan et al, 2009). Given this
prior history, it is not surprising that differential network
analysis is being recognized as a powerful approach to help
understand a cellular response.

Differential mapping of physical
interactions

An early case in which large network maps were analyzed
differentially is the comparison of protein-protein interaction
(PPI) data across species. Cross-species PPI analysis can be
illuminating in terms of uncovering evolutionary conserved
structures. For example, the PPI networks of Saccharomyces
cerevisiae were compared against other microbial species such
as Helicobacter pylori to predict previously uncharacterized
PPIs (Matthews et al, 2001; Yu et al, 2004) or to identify
evolutionarily conserved protein complexes (Kelley et al,
2003). Further work used multiple network alignment across
three species simultaneously—yeast, fly and worm—to
accurately infer conserved protein complexes and pathways
in all three organisms (Sharan et al, 2005). However, all of
these evolutionary network comparisons focused on interac-
tions that are found in common across species, not those that
differ. Differential interactions were difficult to detect because
the networks of each species were measured in independent
studies with relatively low network coverage in each study,
resulting in a high false negative rate. Thus, failure to find
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Figure 1 A historical timeline of differential approaches in biology. The top half of the timeline (green) tracks approaches used for differential analysis of molecular

profiles over the past 20 years; the bottom half (yellow) tracks parallel approaches for differential analysis of molecular networks that have emerged more recently, within

the past decade.
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network conservation in a particular species was likely due to
low network coverage, not evolutionary divergence.

Beyond comparison of PPIs across species, very little effort
has been expended to characterize PPI networks under
different conditions within a given species. In one early
exception, Wrana and colleagues developed the LUMIER
(luminescence-based mammalian interactome mapping) strat-
egy to identify pairwise PPIs among a set of human factors
with and without stimulation by transforming growth factor 8
(TGFB) (Barrios-Rodiles et al, 2005). In the LUMIER approach,
the luciferase enzyme is fused to protein ‘baits’ of interest and
expressed in the same cell with Flag-tagged protein ‘preys.
Using an anti-Flag antibody, prey proteins are immunopreci-
pitated in different conditions and the potential interactions
measured quantitatively by the intensity of light in a luciferase
assay. There is no formal score computed for the change in
interaction strength between conditions; rather, baits with
cross-condition interaction changes are qualitatively identified
and validated biochemically. For instance, differential PPI
mapping in the presence and absence of the TGFf has allowed
for the identification of functional links between the TGFf
pathway, the p2l-activated kinase network and Occludin, a
structural component regulating tight junctions during epithe-
lial-to-mesenchymal transitions.

More recently, a quantitative approach has been presented
for measuring differential interactions in PPI networks (Bisson
et al, 2011). This approach, which the authors call affinity
purification-selected reaction monitoring (AP-SRM), was used
to map quantitative changes in interaction with the protein
Grb2, an adapter protein that participates in diverse protein
complexes involved in multiple aspects of cellular function.
This network was generated in HEK293T cells at six
time points after stimulation with epidermal growth factor
(Figure 2) as well as in the presence of five other growth
factors. SRM was used to measure integrated peak intensities
for each peptide, which were combined into a weighted
average intensity at each time point or condition. An intensity
fold change was then calculated for each protein between two
conditions, representing the change in interaction strength.
The significance of this change was estimated using a statistic
similar to the t-test, whose value increases with the difference
in peak intensities but decreases with the variance observed
over biological and technical replicates. Analysis of the
resulting differential interactions showed that the composition
of Grb2 complexes was remarkably dependent on the growth
factor used for stimulation. By focusing on additional hub
proteins beyond Grb2, this method is likely to be useful for
obtaining a global overview of protein network remodeling in
response to a stimulus.

Apart from PPI studies, a few studies have profiled
transcriptional (protein-DNA) physical interactions under
different conditions and across species. For example, Harbison
et al (2004) carried out a genome-wide analysis of transcrip-
tion factor binding in the yeast S. cerevisiaze using the
technique of chromatin immunoprecipitation followed by
microchip hybridization (ChIP-CHIP), with some of the data
being collected under different stimulating and stress condi-
tions. Workman et al (2006) performed a ChIP-CHIP study
focused specifically on the changes in transcriptional wiring
that occur with respect to yeast transcription factor binding
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after exposure to the DNA damaging agent methyl methane-
sulfonate (MMS), for 30 different transcription factors. Cross-
species analysis of a handful of transcription factors in both
yeast (Borneman et al, 2007; Tuch et al, 2008) and mammalian
cells (Schmidt et al, 2010) has revealed that protein-DNA
interactions evolve quite rapidly over evolutionary time.

Differential mapping of genetic
interactions

Genetic interaction mapping has also been successfully used in
a cross-species mode to compare budding and fission yeasts
(Dixon et al, 2008; Roguev et al, 2008). When the data derived
from these genetic networks are combined with PPI data, they
provide a unique view of the conservation of the interaction
architecture across eukaryotic organisms. For example,
Roguev et al (2008) revealed that protein complexes were
highly conserved between the different yeasts, but that the
genetic interactions between protein complexes had diverged
significantly. Cross-species drug profiling in these two same
organisms revealed that the use of two very divergent
eukaryotic species allows for a more accurate prediction of
evolutionary conserved drug mode of action (Kapitzky et al,
2010). Related cross-species drug profiling studies have
extended this type of analysis to other yeast species, including
Candida and Cryptococus (Spitzer et al, 2011). Extension of
these types of works to higher organisms will provide even
greater insight into the genetic and physical architecture of the
eukaryotic cell.

Quantitative analysis of genetic interactions, where both
positive (alleviating) and negative (aggravating) interactions
are observed along with their interaction strengths, was
initially accomplished in budding yeast using the E-MAP
(epistatic miniarray profile) approach (Schuldiner et al, 2005;
Beltrao et al, 2010). Recently, we have developed a strategy for
mapping genetic networks not only quantitatively but also
differentially—an approach we call differential epistasis
mapping or dE-MAP (Bandyopadhyay et al, 2010). To create
a dE-MAP, large-scale quantitative genetic interaction screens
are performed on solid agar in two different conditions, such
as with and without treatment by a pharmacologic agent
(Figure 3). Next, a differential interaction score is computed
for each gene pair, by subtracting the static score in the first
condition from the static score in the second, then indexing
this value against the null distribution of values expected
when the two conditions are equal replicates. A similar
approach has been used to demonstrate changes in genetic
interactions in a lower-throughput, liquid culture-based
format (St Onge et al, 2007), and work has also been carried
out in Drosophila melanogaster to map genetic interactions
using RNAi in different genetic backgrounds (Bakal et al,
2008).

As a proof-of-principle, the first implementation of the dE-
MAP approach was to analyze the differential network that
arises when cells are challenged by DNA damage. Genetic
interactions were interrogated among a set of 418 signaling
and transcription genes, leading to the creation of ~80000
double-mutant strains. Double mutants were grown with or
without 0.02% MMS, a model DNA damaging agent. The
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Figure 2 Differential physical interaction mapping with AP-SRM. Dynamic protein interaction network involving GRB2. Red-shaded nodes represent proteins that are
recruited to GRB2 complexes after EGF stimulation irrespective of time, green-shaded nodes those that are decreased and blue-shaded nodes those present in GRB2
complexes in nonstimulated (control) cells. The thickness of the node border is proportional to the intensity of the change compared with control levels. Rectangles inside
the nodes show the relative fold change for each time point. Reproduced from Bisson et al (2011).

resulting colony sizes were analyzed to compute static
interaction scores in each condition and, from these static
scores, a set of significant differential interactions was derived.
The majority of static interactions detected in MMS-treated
conditions (53 %) were not observed in untreated conditions,
indicating that a DNA damaging agent dramatically alters the
genetic interaction landscape. The data also revealed that
protein complexes are generally stable in response to
perturbation, but the functional relations between these
complexes are substantially reorganized. Interestingly, a
similar trend was observed when analyzing genetic and
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physical data across different eukaryotic species (Roguev
et al, 2008).

Parallels between housekeeping genes
and housekeeping interactions

Housekeeping genes are genes such as actin, myosin, albumin
and GAPDH that encode the most fundamental components of

cell function and, as such, are expressed constitutively across
cells and tissues (Lewin, 2007). Although dividing genes into
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just two categories—housekeeping and other—is an over-
simplification (certain housekeeping genes have significant
variance in expression; Andersen et al, 2004), housekeeping
genes have nonetheless been a useful concept for several
reasons. First, due to their abundant and constant expression
across conditions they are used frequently as controls for gene
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and protein expression analysis techniques. Second, they have
motivated differential analysis methods such as cDNA library
normalization, mRNA differential display, two-color gene
expression microarrays, and ICAT and SILAC proteomics
(Figure 1), in which the constant expression levels of house-
keeping genes and proteins are normalized away in an attempt
to highlight expression levels that are markedly changing.

The same set of concepts and considerations applies not
only to genes and proteins but also to gene and protein
networks. While some interactions appear and disappear
dynamically, many others remain strong irrespective of
condition and some of these correspond to processes that
might be considered ‘housekeeping. In mapping of static
networks, it is perhaps not coincidental that many of the major
discoveries in these networks to-date have related to essential
housekeeping processes such as basic life support and the
central dogma of transcription and translation. For example,
static genetic networks have been very effective at identifying
novel interactions underlying DNA replication (Collins et al,
2007; Nagai et al, 2008; Lambert et al, 2010), RNA splicing
(Wilmes et al, 2008) and protein folding (Zhao et al, 2005).

On the other hand, of at least equal interest are those
interactions that are activated only during a specific cellular
response. For example, in our study of DNA damage-induced
genetic networks using the dE-MAP technique (Bandyopad-
hyay et al, 2010), both the untreated and treated networks were
strongly enriched for a common set of interactions with genes
involved in transcription, translation, chromatin and other
cellular housekeeping machinery (Figure 3B). In the differ-
ential analysis of these networks, however, new DNA damage
response functions were identified for a number of genes
(e.g., centromere binding factor 1 or CBFI) for which the new
function becomes apparent only after subtraction of one
network from the other. Interestingly, DNA repair factors also
form a rich cluster of interactions in static genetic networks
(Collins et al, 2007; Costanzo et al, 2010) although they are not
interaction ‘hubs’ as they are in the differential DNA damage
network (Bandyopadhyay et al, 2010). Thus, both static and
differential maps provide useful information about a particular
pathway or cellular response.

It is also important to realize that housekeeping genes
(genes expressed uniformly across conditions) must not

Figure 3 Differential genetic interaction mapping with dE-MAP. (A) Schematic
showing principle of differential genetic interaction analysis. Static genetic
interaction maps are measured in each of two conditions (left) resulting in both
positive (yellow) and negative (blue) interactions. Condition 1 is subtracted from
condition 2 to create a differential interaction map (right), in which the significant
differential interactions are those that increase (green) or decrease (red) in score
after the shift in conditions. In the differential map, weak but dynamic interactions
(dotted edges) are magnified and persistent ‘housekeeping’ interactions are
removed (bottom right). Note that (A, E) and (A, C) are decreasing differential
interactions achieved by different circumstances: (A, E) is a positive interaction
that disappears after the conditional shift, while (A, C) is a negative interaction
that appears after the conditional shift. (B) Differential analysis for yeast gene
SLT2. Genetic interaction data from Bandyopadhyay et al (2010) collected in
either untreated or DNA-damage-treated conditions (top) are compared to create
a differential interaction map (bottom). Interactions with transcriptional machinery
are present in both conditions and thus downgraded in the differential map, while
interactions with kinases and DNA damage response genes are highlighted.
Functional annotations in the differential network summarize the predominant
function within the demarcated set of genes.
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necessarily give rise to housekeeping interactions (interac-
tions present uniformly across conditions). Genes normally
thought of as housekeeping may, at the network level, show a
rich pattern of both static and differential interactions. Future
differential analyses may allow us to better characterize the
role that a variety of housekeeping genes play in a variety of
dynamic cellular behaviors and responses.

Statistical treatment of differential
networks: a ‘Call to Arms’

Despite the increasing number of differential networks that
have been generated to date, there has been very little work
devoted to understanding the statistical issues associated with
such networks. Differential network analysis introduces a
number of statistical challenges, only some of which have
been appreciated. For instance, differential analysis across
conditions can mitigate experimental biases or errors that
affect each condition in the same way, that is, systematic
experimental artifacts that are reproducible. In this case,
differences between a reference and a control may be
meaningful even where absolute measurements are not (Kerr
et al, 2000; Hatfield et al, 2003). However, in the general case,
the difference of two static interaction measurements, with
each influenced by independent errors, has variance equal to
twice than that of either static measurement taken separately.
Thus, it will be important to understand the relative contribu-
tion of the systematic and independent errors influencing an
interaction mapping experiment. In the near future, we should
attempt to tackle these and other statistical aspects of
differential network maps, and doing so will undoubtedly
lead to important insights and improvements in the published
interaction maps. Certainly, there have been hundreds of
manuscripts reporting on methods for differential analysis of
gene expression data, which provides a pool of possible
methods and suggests that there is at least some effort that
should be pursued on the topic of differential analysis of
networks.

Perspective and future directions

Where to now? In the future, more comprehensive and
duantitative study of physical and genetic interaction maps
across species and within a species under different conditions
will be crucial for understanding both global evolutionary
trends as well as how specific pathways are re-wired in the
presence of an exogenous stress. We expect that many more
interaction maps will be generated in the presence of drugs, as
was done with the MMS dE-MAP (Bandyopadhyay et al, 2010),
but using different concentrations and in a time-dependent
manner after exposure to the compound. Such work would
provide insight into drug response as well as how ultimately
drug resistance is manifested within interaction networks.
Another extension of this work would include genetic
interaction mapping of analog-sensitive kinase mutants in
the presence of the relevant compound, which specifically
inhibits the kinase (Bishop et al, 2000) to more accurately
ascertain which effects on signaling cascades are primary and
which occur downstream (J Kliegman and K Shokat, personal
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communication). Also, innovative applications of microscopy
may allow us to determine how networks change in cells as
they come into contact with different cell types (Jorgensen
et al, 2009), as well as how they spatially change within an
organism in a condition and time-dependent manner (Maeder
et al, 2007).

It is important to recognize that organisms normally do not
exist in isolation, but participate in pathogenic or symbiotic
relationships with other organisms which impinge on the
biochemical and genetic make-up of all species involved
(Fischbach and Krogan, 2010). Understanding the dynamics of
inter-species, molecular level interactions will be key to help
unravel these complicated relationships. Pathogenic organ-
isms—in particular viruses—have relatively small genomes
(~10-100) and thus rely heavily on key host machinery for
infection and propagation, making them excellent probes for
understanding the dynamics of mammalian biological sys-
tems. Viral proteins will be involved in hijacking key
molecular machines within the host and reconfiguring their
physical and genetic interactions during infection. In many
ways, infection from another organism represents the ultimate
‘stress’ on a system and characterizing host-pathogen PPIs
using strategies that target pairwise interactions (Mukhtar
et al, 2011) or protein complexes (Jager et al, 2011) will be key
to understanding how host cellular pathways are re-wired
during the course of infection. Analyzing these connections in
a time-dependent and post-infection manner will also show
how the host attempts to respond to the foreign host
machinery.

Work is also ongoing to use networks to gain insight into
different disease states (Braun et al, 2008; Pawson and
Linding, 2008). For instance, Goh et al (2007) show that there
is a higher degree of physical connectivity between proteins
whose genes are mutated in the same disease state. More
detailed studies of how these individual mutations would
perturb specific interactions will provide greater insight into
the molecular basis of these diseases (Zhong et al, 2009). In the
future, network biology can also be used to predict the onset
and severity of specific disease states. For example, several
groups have shown that alterations in the physical interaction
network can be a powerful indicator of breast cancer prognosis
(Chuang et al, 2007; Taylor et al, 2009).

Finally, an important question moving forward is the extent
to which network representations are able to faithfully capture
cellular structure and behavior at all. Even allowing for
dynamic interactions, it is not given that network models offer
the best description of the processes ongoing in a cell. Network
models typically represent a protein or other molecule as a
single node ‘wired’ to others to represent known molecular
interactions. These network representations have been very
useful to recognize functional modules such as protein
complexes (Bader and Hogue, 2003), transcriptional circuits
(Tsong et al, 2003) and signaling pathways (Steffen et al,
2002). They have also been useful for the study of unifying
network topologies and architectures, which link molecular
biology with many other scientific disciplines that involve
networks (Milo et al, 2002; Barabasi, 2009; Liu et al, 2011).
On the other hand, although conceptually useful, it is clear that
network ‘wires’ have little resemblance to the physical reality,
in which a population of potentially many copies of a protein
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diffuses or is transported throughout the cell and, in so doing,
experiences a variety of opportunities for interaction that
range in timing, affinity, specificity and stoichiometry. None-
theless, there is likely still much mileage to be gained with the
networks view before graduating to the next one, whatever
shape that may take.

Conclusion

After years of static genetic and physical interaction mapping,
differential network analysis is now becoming prevalent as
a tool to more comprehensively interrogate biological systems
in a variety of organisms. Conceptually, differential analysis is
not new but has been a successful mode of genomic and
proteomic analysis for decades. Rather, a major reason for this
advancement can be attributed to the fact that experimental
and computational methods for network mapping are becom-
ing more robust, quantitative, and high-throughput. Even
though many insights still remain to be extracted from static
interaction maps, differential mapping will allow us to explore
a previously unexplored interactome and biological space,
ultimately providing a deeper understanding of complex
biological phenomena.
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