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Recognition of pathogen-associated molecular signatures is
critically important in proper activation of the immune
system. The toll-like receptor (TLR) signaling network is
responsible for innate immune response. In mammalians,
there are 11 TLRs that recognize a variety of ligands from
pathogens to trigger immunological responses. In this
paper, we present a comprehensive map of TLRs and
interleukin 1 receptor signaling networks based on papers
published so far. The map illustrates the possible existence
of amain network subsystem that has a bow-tie structure in
which myeloid differentiation primary response gene 88
(MyD88) is a nonredundant core element, two collateral
subsystems with small GTPase and phosphatidylinositol
signaling, and MyD88-independent pathway. There is
extensive crosstalk between the main bow-tie network
and subsystems, as well as feedback and feedforward
controls. One obvious feature of this network is the fragility
against removal of the nonredundant core element, which
is MyD88, and involvement of collateral subsystems for
generating different reactions and gene expressions for
different stimuli.
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doi:10.1038/msb4100057
Subject Categories: immunology; signal transduction

Keywords: bow-tie structure; robustness; toll-like receptor

Introduction

The toll-like receptor (TLR) signaling pathway is the front-line
subsystem against invasive microorganisms for both innate
and adaptive immunity (Iwasaki and Medzhitov, 2004). To
sense innumerable and various pathogenic threats, TLRs have
evolved to recognize pathogen-associated molecular patterns
(PAMPs), which represent molecular features on the surface
of pathogens. The TLR gene family and their pathways have
been evolutionarily well conserved in both invertebrates and
vertebrates (Hoffmann and Reichhart, 2002; Roach et al,
2005). One of the fundamental questions is how pathogenic
stimuli in the form of PAMPs induce various responses that

ultimately protect the host. Each TLR binds to a variety of
PAMPs that work as molecular markers of potential pathogens
that the host shall be defended against. For example, TLR4was
found to be a receptor for lipolysaccharide (LPS) and essential
to generate responses to Gram-negative bacteria in which
LPS is a part of the outer membrane (Poltorak et al, 1998),
TLR9 responds to DNA-containing unmethylated CpG motifs
(Hemmi et al, 2000), TLR3 is activated by double-stranded
RNA (Alexopoulou et al, 2001), and bacteria flagellin activates
TLR5 (Hayashi et al, 2001). There are extensive reviews on
ligand receptor relationships for further reference (Akira and
Takeda, 2004; Beutler, 2004; Iwasaki and Medzhitov, 2004).
TLRs and interleukin 1 receptors (IL-1Rs) have a conserved
region of amino acids, which is known as the toll/IL-1R (TIR)
domain (Slack et al, 2000). Signaling of the TLR/IL-1R
superfamily is mediated through myeloid differentiation
primary response gene 88 (MyD88), IL-1R-associated kinases
(IRAKs), transforming growth factor beta-activated kinase 1
(TAK1), TAK1-binding protein 1 (TAB1), TAB2, tumor necrosis
factor (TNF) receptor-associated factor 6 (TRAF6), etc. (Akira
and Takeda, 2004). It should be mentioned that TLR1, TLR2,
TLR6, TLR4, and TLR5 are located on the plasma membrane,
whereas TLR3, TLR7, and TLR9 are not located on the cell
surface (Akira and Takeda, 2004). While ligands for each TLR
and interactions downstream of receptors are now being
identified at a dramatic pace, doubt is now being cast on the
global logic behind all TLR pathways. It was argued that the
TLR pathway forms an hour-glass structure (Beutler, 2004),
but the precise shape of the global TLR signaling network and
its functional implications has not been elucidated. Since TLRs
activate innate immunity and influence the nature of adaptive
immunity (Hoebe et al, 2004), understanding the logic behind
TLR signaling is the most important topic in immunology.
Therefore, we present a map of TLR and IL-1R signaling

networks (Figure 1). We manually assembled molecular
interactions based on published papers and constructed a
TLR map that incorporates the possible pathways in mam-
malians using a modeling support software, CellDesigner
ver.2.2 (http://celldesigner.org/) (Funahashi and Kitano,
2003). The map comprises 652 species and 444 reactions.
The species shown on the TLR map can be categorized as
follows: 340 proteins, 170 oligomers, 79 simple molecules,
18 genes, eight RNA, three ions, 18 degraded products, and
16 phenotypes. The breakdown of reactions is as follows:
242 state transitions, 106 associations, 25 dissociations, 33
transports, 24 unknown transitions, and 14 omitted transi-
tions. Out of 444 reactions, there are 397 interactions: 270
catalyses, 75 unknown catalyses, 20 inhibitions, nine un-
known inhibitions, and 23 transcriptional activations. All the
411 references used for constructing the map are listed in the
‘References for TLR Pathway Map’ and the CellDesigner
software allows the user to access references that are used as
grounds of individual reaction using PubMed ID. It should be
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noted that the map is a best effort based on existing papers and
was created manually. The criteria for inclusion into the map
are similar to those for the previous epidermal growth factor
receptor (EGFR) signaling map (Oda et al, 2005), and we did
our best to reconstruct a reliable map. However, errors and
missing interactions are inevitable, and we must assume that
there are interactions that have yet to be identified. Obviously,
the map will be continuously updated and possible errors will
be corrected. This correction and updating process has to be a
continuous process involving the community of TLR signaling
experts.
One of the issues in constructing maps of molecular

interactions is the reliability of the map. But what does map
accuracy mean, what are the justifications for including
specific interactions but excluding others, and how should
conflicting and uncertain reports be dealt with? There are at
least two major sources of inaccuracies: inaccuracy within
each paper of reference, and inaccuracy of interpretation of
papers. The former problem is inherent in many pathway
databases based on manual curation, and only way to mitigate
the problem is to set a certain standard on which papers to be
used formap construction. As in the case of the EGFR signaling
map, we have included interactions that have been experi-
mentally verified in multiple reports. We may include
interactions that are reported in a single paper if there are no
conflicting reports. But almost all experiments in them were
performed under the distinct conditions at each laboratory.

Hence, it is inevitable that drawing the pathway is like the
mosaic woodwork that is gathering the ‘possible’ interactions.
The selection of the information on the pathway map must be
entrusted to the users according to their purposes, and which
interpretation to be widely agreed may rest on the community-
wide discusions. For some readers, some interactions may be
viewed as premature hypotheses, whereas the same inter-
actions may be considered more plausible by others. The
certaintity rating may be used to illustrate how much each
interaction is hypothetical or the level of confidence, but such
a rating itself may be subjective without a sophisticated
evaluation method. Thus, at present the map could be
skeptically viewed as merely representing ‘The View of the
World’ of the authors, rather like the ‘NewYorkers’ View of the
World’ map sold to tourists. Nevertheless, we consider our
map to be useful because it does represent one comprehensive
view of the network, the map is based on published articles,
and publication of such a map can initiate a community-wide
interactive process for creating a more accurate and informa-
tion-rich map.We are currently working on a scheme to accept
community-wide feedback on the map, so that the map can be
iteratively improved in both coverage and quality.
In order tomake themap a practical and accessible resource,

it has to be provided in a standard format. Thus, the map
complies with Systems Biology Markup Language (SBML) for
machine readable representation (Hucka et al, 2003), and
adopts a specific graphical notation system called the process

Figure 1 A comprehensive molecular interaction map of TLR signaling network. The SBML and PDF files of the map are available from the Supplementary information.
The map can be best viewed in the PDF format. All of the species, proteins, and reactions included in the map are listed in the SBML file when opened by CellDesigner
(http://celldesigner.org/). Abbreviations: A20, tumor necrosis factor-inducible protein A20; Akt, v-akt murine thymoma viral oncogene homolog; ASK, apoptosis signal-
regulating kinase; ATF, activating transcription factor; Bcl, B-cell CLL/lymphoma; beta-TrCP, beta-transducin repeat-containing protein; BTK, Bruton
agammaglobulinemia tyrosine kinase; CaM, calmodulin; CaMKI, calcium/calmodulin-dependent protein kinase; CBP, CREB-binding protein; c-Cbl, Casitas B-lineage
lymphoma proto-oncogene; CD, cluster of differentiation; Cdc42, cell division cycle 42 (GTP-binding protein, 25 kDa); CK, casein kinase; c-Myc, v-myc myelocytomatosis
viral oncogene homolog; CRE, cAMP response element; CREB, cAMP response element-binding protein; CsgA, major curlin subunit precursor, Salmonella
enterica; c-Src, v-src sarcoma (Schmidt–Ruppin A-2) viral oncogene homolog (avian); C-TAK1, MAP/microtubule affinity-regulating kinase 3; CYLD, cylindromatosis
(turban tumor syndrome); DAG, diacylglycerol; dsRNA, double-strand RNA; ECSIT, evolutionarily conserved signaling intermediate in toll pathway; EEA, early
endosome antigen; eIF, eukaryotic translation initiation factor; Elk-1, ETS domain protein Elk-1; ERK, extracellular signal-regulated kinase; FADD, Fas-associated via
death domain; Fos, v-fos FBJ murine osteosarcoma viral oncogene homolog; gp91phox, glycoprotein of 91 kDa from phagocyte oxidase; GSK, glycogen synthase
kinase; HDAC, histone deacetylase, HMG, high-mobility group nucleosome-binding domain; hnRNP, heterogeneous nuclear ribonucleoprotein; HSP, heat-shock
protein; Ibtk, inhibitor of Bruton agammaglobulinemia tyrosine kinase; ICE, interleukin 1-B-converting enzyme; IkB, nuclear factor of k light polypeptide gene enhancer
in B-cells inhibitor; IKK, I-k-B kinase; IL, interleukin; IL-1ra, interleukin 1 receptor antagonist; IL-1RAcP, interleukin 1 receptor accessory protein; IP3, inositol 1,4,5-
triphosphate; IP3R, inositol 1,4,5-triphosphate receptor; IRAK, interleukin 1 receptor-associated kinase; IRF, interferon-regulatory factor; ISRE, interferon-a-stimulated
response element; JNK, c-Jun N-terminal kinase; Jun, v-jun sarcoma virus 17 oncogene homolog (avian); KSR, kinase suppressor of ras; LBP, lipopolysaccharide-
binding protein; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MAPKAPK, mitogen-activated protein kinase-activated protein kinase; MBP, myelin
basic protein; MD-2, lymphocyte antigen 96; MEKK, MAPK/ERK kinase kinase; MKK, mitogen-activated protein kinase kinase; MKP, MAP kinase phosphatase; MMT
virus, mouse mammary tumor virus; Mnk, MAP kinase interacting serine/threonine kinase; MSK, mitogen- and stress-activated protein kinase; MyD88, myeloid
differentiation primary response gene 88; NF-kB, nuclear factor kB; NIK, nuclear factor kB-inducing kinase; NOD, nucleotide-binding oligomerization domain; NSF,
N-ethylmaleimide-sensitive factor; NUR77, nuclear receptor subfamily 4, group A, member 1; p62, phosphotyrosine-independent ligand for the Lck SH2 domain p62;
PAK, p21-activated kinase; PDK, 3-phosphoinositide-dependent protein kinase; pellino, pellino (Drosophila) homolog; PI(4)P5K, phosphatidylinositol-5-kinase; PI,
phosphatidylinositol; Pi, phosphoric ion; PI3,4,5-P3, phosphatidylinositol-3,4,5-triphosphate; PI3,4-P2, phosphatidylinositol-3,4-bisphosphate; PI3K, phosphatidyl-
inositol-3-kinase; PI3-P, phosphatidylinositol-3-phosphate; PI4,5-P2, phosphatidylinositol-4,5-bisphosphate; PI4-P, phosphatidylinositol-4-phosphate; PKA, protein kinase
A; PKC, protein kinase C; PKR, eukaryotic translation initiation factor 2-a kinase; PLC, phospholipase C; PLD, phospholipase D; PP, protein phosphatase; Rab, RAS-
associated protein; Rabaptin, RAB GTPase-binding effector protein; Rabex, RAB guanine nucleotide exchange factor; Rac, ras-related C3 botulinum toxin substrate;
Raf, v-raf-1 murine leukemia viral oncogene homolog; Ras, rat sarcoma viral oncogene homolog; Rho, ras homolog gene family; RhoGDI, GDP dissociation inhibitor;
Rin, Ras interaction; RIP, receptor-interacting serine–threonine kinase; RKIP, Raf kinase inhibitor protein; RS virus, respiratory syncytial virus; Sab, SH3-domain-binding
protein 5 (BTK-associated); SERCA, sarcoplasmic/endoplasmic reticulum calcium ATPase; SIGIRR, single immunoglobulin and toll-interleukin 1 receptor (TIR) domain;
SOCS, suppressor of cytokine signaling; ssRNA, single-strand RNA; ST2L, interleukin 1 receptor-like 1; STF, soluble tuberculosis factor; TAB, transforming growth factor
beta-activated kinase-binding protein; TAK, transforming growth factor beta-activated kinase; TBK, TRAF family member-associated nuclear factor kB activator-binding
kinase; TICAM, toll-like receptor adaptor molecule; TIFA, TRAF-interacting protein with a forkhead-associated domain; TIR, toll-interleukin 1 receptor; TIRAP, toll-
interleukin 1 receptor domain-containing adaptor protein; TLR, toll-like receptor; TOLLIP, toll-interacting protein; TPL, tumor progression locus; TRAF, tumor necrosis
factor receptor-associated factor; TRAILR, tumor necrosis factor-related apoptosis-inducing ligand receptor; TRIAD3A, ubiquitin-conjugating enzyme 7-interacting
protein 1, isoform A; TRIP, thyroid hormone receptor interactor; Trx, thioredoxin; Ubc, ubiquitin-conjugating enzyme; Uev, ubiquitin-conjugating enzyme E2 variant;
Vav1, vav 1 oncogene.
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diagram, which intends to provide a standard for representing
molecular interactions in an unambiguous way (Kitano et al,
2005). The main symbols used to represent molecules and
interactions in this map are the same as those of the EGFR
map (Oda et al, 2005), which is based on the process diagram
of Systems Biology Graphical Notation (SBGN: http://
www.sbgn.org/) (Kitano et al, 2005). The compounds, except
proteins, genes, RNAs, and ions, such as lipids and carbohy-
drates, although they are complicated, are all shown as ‘simple
molecule’ for the sake of convenience. Because the TLR system
has numerous combinations of protein complex, we adopted
another local rule in the TLR Pathway Map to enhance the
readability of the map. A protein with ‘*’ at the end of its name
means that it binds to other molecules and often makes a
conformational change. The circle-headed ‘catalysis’ arrow
towards a state transition of a protein with ‘*’ means binding
with it. Readers may notice that there are substantial numbers
of molecular components appearing in both the EGFRmap and
TLR map. In future, CellDesigner will provide a powerful
means to merge several large-scale maps so that an integrated
map, possibly genome-wide in scale, can be created and used
by researchers to navigate through the network.

Architectural features of the TLR map

It is important to construct a comprehensive map of molecular
interactions in order to understand the possible logic behind
the network. Even without kinetic parameters to run a
dynamic simulation, the map provides information that can
be used to analyze architectural features of the network. In
order to analyze the global network architecture, a simpler
diagram that focuses on the flow of information and causal
relationships is needed. Figure 2 is a reduced version of
Figure 1 in which only flows of activations and inhibitions are
shown for the sake of readability. In Figure 2, filled arrows
indicate activation and bar-headed arrows indicate inhibition.
It shows that TLR signaling pathways are roughly divided

into four possible subsystems. The first is the main system
with MyD88–IRAK4–IRAK1–TRAF6 as a bow-tie core process
to activate nuclear factor kappa B (NF-kB) and mitogen-
activated protein kinase (MAPK) cascade, leading to the
induction of many target genes such as cytokines that are
essential for the innate immune response and the maturation
and proliferation of the cell. Almost all TLRs utilize this core
process and so various distinct signals from pathogens are
assembled to only a handful of proteins. The second and third
systems seem to be subsystems with a small GTPase module
and phosphatidylinositol phosphate (PIP) signaling module,
respectively. We consider the small GTPase module and PIP
signaling module to be distinct modules, rather than merging
them into a central MyD88 module. This is because both the
small GTPase module and PIP signaling module receive
extensive inputs directly from receptors and transmit them to
various molecules downstream of MyD88 as well as outside of
downstreamofMyD88. For example, the small GTPasemodule
receives inputs from IL-1R, TLR9, TLR4, and TLR2, and the PIP
signaling module receives inputs from IL-1R, small GTPase
module, TLR2, TLR3, and MyD88, whereas components
within the MyD88 module such as IRAK4, IRAK1, IRAK2,

and TRAF6 are only activated through MyD88 activation. At
the same time, small GTPase and PI3 kinase (PI3K) activates
NF-kB and MAPK (Arbibe et al, 2000; Xu et al, 2003; Sarkar
et al, 2004). Thus, the small GTPase and PIP signaling modules
shall be considered as collateral modules, instead of merging
into the central MyD88 module. These subsystems are
essential for the battle against invaders. Their pathways are
merged at several points and cooperate with each other to
exclude pathogens by actin reorganization leading to chemo-
taxis and phagocytosis and the production of reactive oxygen
species (ROS) to kill them. The last subsystem is limited to
TLR3 and TLR4, which can stimulate another pathway called
MyD88-independent pathway through the TLR adaptor
molecule (TICAM)1/2 (Yamamoto et al, 2003). It remains to
be investigated how it signals to MAPK cascade (Chu et al,
1999; Goh et al, 2000), but it can activate NF-kB on the late
phase as well as the interferon-regulatory factor family that
induces potential cytokines, type I interferon, and the
induction of IL-1 activates autocrinely MyD88-dependent
pathways and two subsystems leading to the full activation
of the whole system. Thus, this pathway would appear to be
a detour.
One of the notable features of the TLR signaling network is

the possible existence of a bow-tie structure as the central
subsystem of the TLR network in which MyD88 is a
nonredundant core. The bow-tie structure has also been
observed in the EGFR signaling network (Oda et al, 2005), and
has been considered to be a characteristic architectural feature
of robust systems (Csete and Doyle, 2004; Kitano, 2004). At the
same time, the TLR signaling network is different from the
EGFR signaling network as it has extensive collateral pathways
that may modulate downstream behaviors of the main bow-tie
network.

Multiple system controls

As shown in Figure 2, there are multiple system controls in the
TLR system. In total, seven positive feedback and seven
negative feedback loops are identified (shown in red and blue,
respectively). Among positive feedback loops, the four loops
(Nos. 1–4 in Table I) are the regulation from the output to the
input, and one (No. 5) is in the bow-tie lower wing. Six
negative feedback loops are classified as follows: two (Nos. 8
and 9) are in the bow-tie lower wing, two (Nos. 10 and 11) are
from the output to the lower wing, one (No. 12) is from the
output to the bow-tie core process, and the last one (No. 13) is
from the output to the input. The remaining two positive (Nos.
6 and 7) and one negative (No. 14) feedback loops exist in the
subsystems involved in the regulation of concentration of the
cytosol calcium. There are conflicting feedback loops. For
example, feedback from IL-1a and IL-1b to IL-1RI (Nos. 1 and
2, respectively) provides postitive feedbacks, whereas feed-
back from interleukin 1 receptor antagonist (IL-1ra) to IL-1RI
(No. 13) provides a negative feedback. The map predicts
balance of activation between IL-1 and IL-1ra affects proin-
flammatory response of the system. A recent paper reports this
is actually a case(Matsuki et al, 2006).
In addition to these feedback controls, there is a possible

negative feedforward control (shown in purple). MyD88 also
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mediates apoptosis via a Fas-associated death domain–cas-
pase-8-dependent pathway, and TLR4 and TLR2 can induce
apoptosis through an orphan nuclear receptor Nur77 by a
caspase-independent pathway, although its precise mechan-
ism is unclear (Kim et al, 2003). Thus, the TLR system induces
the activation of the immunity to survive, while it prepares cell
death at the same time. At a cell-level view, this mechanism
could be considered as a negative feedforward control
(Table I).

Regulations between main and
subsystems

There are many crosstalk regulations between the main bow-
tie pathway and two subsystems. Especially, we identified a lot
of crosstalk regulations from a subsystem to the main bow-tie
pathway; positive and negative regulations are shown in
orange and green, respectively. There are 13 positive and
seven negative crosstalk regulations, and interestingly all the
crosstalk regulations go towards the bow-tie lower wing. For
example, small GTPases and ROS can stimulate MAPK cascade
by nine ways, and v-akt murine thymoma viral oncogene
homolog (Akt) can inhibit both MAPK cascade and NF-kB
activation bymeans of five distinct mechanisms. Thus, the fact
that regulations from other systems concentrate in the bow-tie
lower wing is highly suggestive.

Possible undiscovered negative
regulations

The bow-tie structure has extensive system controls to govern
the system’s dynamics. In this paper, we demonstrate that TLR
pathway forms a bow-tie structure and the two related
subsystems with multiple positive/negative system controls
and crosstalk regulations. However, we could identify no
negative regulations from the lower wing and/or the outputs
to the upper wing and/or inputs in the TLR system while
constructing this map. While both ‘inhibition’ and ‘activation’
usually exist to regulate the balance, there may be undiscov-
ered negative regulations in this pathway. For example, NF-kB
induces both IL-1 and IL-1ra, an inhibitor of IL-1R, so there
must be negative regulations from the lower wing and/or
outputs against each TLR. Recently, many negative regulators
of TLRs such as soluble TLR4 (Iwami et al, 2000) have been
reported (reviewed by Liew et al, 2005) and, although their
regulations remains to be investigated, they must be strong
candidates. It is important to understand the TLR system in
depth to research the negative regulations that seem to be
lacking in a system-level view.
Naturally, there is a huge cytokine/chemokine network in

the downstream region of the TLR system and it is regulated
from the network both positively and negatively. For example,
suppressor of cytokine signaling 1, which is the downstream
element of cytokine signaling such as interferon and IL-6, has
been found to inhibit both NF-kB (p65) and IRAK1 activation.
(Kinjyo et al, 2002; Nakagawa et al, 2002; Ryo et al, 2003) We
are planning to construct and analyze the complicated
cytokine/chemokine networks and their interactions in the
future.

Mechanisms for differential responses
for different stimuli

Since MyD88 is the single core element in the bow-tie
structure, any inputs that converge into this network are only
able to change the activation level of MyD88. This subsystem
alone cannot make different responses regardless of different
stimuli.
One of themajor questions in signal-transduction research is

how a specific signal-transduction network generates different
responses for each set of combinatorial stimuli. Recently, an
extensive study has been made to demonstrate some signaling
pathway function as classifier of stimuli (Janes et al, 2005).
What is the logic behind such processes? Previously, we have
created a comprehensive map of the EGFR signaling network
in which the core of the bow-tie structure consists of PIPs,
small GTPase, nonreceptor tyrosine kinase (non-RTK), and
possibly signal transducer and activator of transcription 1/2.
There are three or four possible elements in the core of the
bow-tie architecture. A similar structure may be found in the
G-protein-coupled receptor (GPCR) signaling network where
calcium, cyclic AMP, and inositol phosphate are likely
candidates for core elements of the bow-tie structure. In these
networks, we can assume the existence of hyperspace, a
mathematical term referring to N-dimensional space, created
by activation levels of a small number of core elements, where
each subregion within the hyperspace may correspond to
different responses (Figure 3A). Therefore, various inputs may
be clustered in the hyperspace, which may be called ‘classifier
hyperspace’, and relayed to outputs. In other words, how the
signaling network responds to a specific set of stimuli depends
on the activation levels and temporal dynamics of molecules
in this theoretical hyperspace. However, in the TLR signaling
network, there is only one element in the core of the bow-tie
network that precludes the capability to generate differential
outputs alone. Differential outputs are attained by modulation
of subnetworks that are MyD88-independent pathways, by the
small GTPase subnetwork, and by the PIPs subnetwork. The
MyD88-dependent pathway may only function to trigger the
activation of the downstream signaling system (Figure 3B). In
this case, differences of responses for each stimuli are greatly
influenced by the activity of the classifier hyperspace
composed of TICAM1 for the MyD88-independent pathway,
small GTPases including cell division cycle 42 (Cdc42), ras-
related C3 botulinum toxin substrate 1 (Rac1), rat sarcoma
viral oncogene homolog (Ras), ras homolog gene family A
(RhoA), and PIPs. The essential idea behind the classifier
hyperspace is that it implies that a certain abstract representa-
tion exists in the signal-transduction process, similar to a
learning layer of certain types of neural networks. In other
words, a signal-transduction network is an evolved network
that can classify various stimuli into a limited number of
categories where each category triggers a specific sequence of
responses. This classification depends on the activity level and
temporal dynamics, often called attractor dynamics (Strogatz,
1994), of the components involved. Figure 3 indicates a simple
view in which the activity levels of each component appear to
be used for classification, but classification can generally be
made by attractor dynamics where each attractor can be
interpreted as a symbol corresponding to our subjectively
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labeled interpretation of cellular responses (Hao, 1991). If this
insight is correct, it suggests the existence of a common
principle on how the signal-transduction network generates
various responses to a broad range of stimuli in a consistent
manner. This is an important hypothesis that needs to be
experimentally verified.

Conclusion

A comprehensive TLR signaling network that provides an
overall network architecture of molecular interaction was
created based on papers published so far. Although this map is
far from complete in covering all interactions of the TLR
signaling network, it represents a comprehensive body of
knowledge available today. The map reveals the existence of
a possible bow-tie network accompanied with collateral sub-
networks that involve MyD88-independent pathways, small
GTPase, and PIPs. The central bow-tie network relies on
MyD88, which is a nonredundant core element of the network.
This makes the whole system susceptible to the removal of
MyD88 as seen in the phenotype of MyD88�/�-deficient
mouse (Akira, 2000). This is a weakness of the system.
Comparison with other signaling networks such as the EGFR
signaling network and GPCR signaling network illustrates
several characteristic features of the TLR signaling network as
well as common features, which we proposed as a ‘classifier
hyperspace’. This is interesting because similar operational
principles on how to generate different responses to various
input stimuli have emerged from investigating the structure
of networks alone. Further elaboration of the concept and
experimental verification of this hypothesis will be important
in signal-transduction research in the future. While extensive
feedback loops exist, we have noticed that only a few negative
feedback loops have been reported so far. We consider that
there may be a number of undiscovered negative feedback

loops in this signaling network. We hope this map will
contribute to system-wide studies of TLR signaling as well as
immunology in general. However, the map is not complete and
a number of undiscovered interactions are predicted; the map
will be updated in collaboration with experts in the field.

Supplementary information

Supplementary Information is available at the Molecular
Systems Biology website (www.nature.com/msb).
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