




















the profile sets of known modules for evidence pointing toward new

variants or (iii) manual refinement and extension of results obtained

from automated complex-centric profiling, for example, by extend-

ing the set of automatically detected complex components with

additional proteins, e.g., derived from the literature or from interac-

tion network context. Analyses are assisted by the CCprofiler algo-

rithm suggesting distinct co-elution signals and calculating their

expected to apparent molecular weight mismatch, among other

metrics, in order to speed up data interpretation by expert users.

SECexplorer can be accessed at https://sec-explorer.ethz.ch/

(Fig 7A). As an example for the use of SECexplorer, we followed up

on the peak shoulder at elevated molecular weight observed in the

CSN holo-complex co-elution signal (Compare Fig 5B). Overlaying

the elution profiles of known components of a E3-CRL substrate of

the COP9 signalosome (Cavadini et al, 2016) revealed defined co-

elution in the peak shoulder range, supporting the detection of a

likely E3-CRL-bound subpopulation of CSN holo-complexes

(Fig 7B). To derive a quantitative signal in the situation of only

partial chromatographic resolution, we employed a Gaussian decon-

volution mixture model, suggesting a substrate-bound fraction of

CSN holo-complex, across the 8 component subunits, of 22 � 3%

(replicate 1) and 25 � 4% (replicate 2, see Fig 7C, and Appendix

Fig S7A and B).

Discussion

In this paper, we describe complex-centric proteome profiling, an

integrated experimental and computational approach to detect and

quantify protein complexes isolated from their natural source, to

generate new insights into the modular organization of proteomes.

The need to systematically analyze the organization of the

proteome arises from the notion of a modular biology proposed by

Hartwell et al (1999). It essentially states that biochemical functions

are for the most part catalyzed and controlled by functional

modules, most frequently protein complexes, and that (genomic)

perturbation of complexes results in perturbed biochemical func-

tions and potentially in disease phenotypes. The notion of a modu-

lar biology thus extends the pioneering work of Pauling et al (1949)

on defining sickle cell anemia as a molecular disease to the

proteome level. Protein complexes and protein–protein interactions

have been studied extensively by a wide range of techniques and

have led to compendia of complexes (Ruepp et al, 2010; Huttlin

et al, 2015; Drew et al, 2017) and maps of protein interaction

networks (Rolland et al, 2014; Huttlin et al, 2015; Szklarczyk et al,

2015). These compendia have in common that they describe

generic, usually static instances of complexes and interactions

(Gstaiger & Aebersold, 2013; Mehta & Trinkle-Mulcahy, 2016;

Havugimana et al, 2017). To distinguish between different biochem-

ical states of a cell, it is also essential to determine qualitative and

quantitative differences in functional modules in different samples.

To date, this has been attempted by two broad approaches. The first

is based on microscopic methods including FRET (Song et al, 2011)

which provide outstanding resolution and precision of steric prox-

imity but are labor-intensive and focused on one to a few interac-

tions at a time. The second is based on a mass spectrometric

approach referred to as correlation profiling (Foster et al, 2006) in

which samples of native modules are separated into a set of frac-

tions and the protein contents of each fraction are determined by

quantitative mass spectrometry. The association of a protein to a

specific module is then asserted by the consistency of the quantita-

tive pattern of the protein in question with other proteins of the

same module (Ranish et al, 2003). Initially used to define the

composition of the specific modules such as the large RNA poly-

merase II preinitiation complex (Ranish et al, 2003) and the human

centrosome (Andersen et al, 2003), correlation profiling has also

been employed to broadly assign protein localization to different

subcellular compartments (Dunkley et al, 2006; Foster et al, 2006;

Yan et al, 2009) and the scope has been extended toward systemati-

cally interrogating protein–protein complexes by correlating protein

patterns in fractions obtained from different biochemical fractiona-

tion methods (Dong et al, 2008; Liu et al, 2008; Rudashevskaya

et al, 2016). Such studies have used different native complex sepa-

ration methods including SEC, IEX, density gradient centrifugation,

and blue native gels (Dong et al, 2008; Liu et al, 2008; Ruda-

shevskaya et al, 2016). The scientific scope has extended to the

analysis of cells of different species, culminating in the description

of hundreds of complexes in a single, albeit massive experiment

(Wan et al, 2015). Correlation profiling therefore has the potential

to determine the quantity and composition of hundreds of protein

modules in a single operation.

In the present paper, we describe a conceptual and technical

advance in the field of correlation profiling. As a conceptual

advance, we introduce the principle of complex-centric analysis. It

◀ Figure 5. Complex-centric detection of COP9 signalosome variant CSN1/3/8.

A For nearly half the CORUM complex hypotheses queried, two or more distinct subunit co-elution signals were detected (see methods and Appendix information on
CCprofiler).

B SEC elution profiles of the COP9 Signalosome subunits with apexes of the detected co-elution signals are indicated by vertical lines. Among the four distinct co-
elution signals detected from the eight canonical CSN subunits’ chromatograms (here with CSN7A, not CSN7B) are two distinct signals indicating distinct co-elution
of two different complex variants.

C Distinct co-elution of holo-CSN (observed at the expected fraction 35) and Mini-CSN CSN1/3/8 (observed eluting offset only one fraction late, F45, of the expected
fraction, F44). Expected fractions are estimated from the cumulative sum of one copy per component and external size calibration. Coloring adapted to highlight
subversion components and their partitioning across holo- and sub-complex. CSN1/3/8 interact and form a sub-module within the CSN holo-complex structure (PDB
accession 4D10). The observations are consistent between the two whole workflow replicates (see Appendix Fig S6A). Lower right panel, validation of distinct elution
behavior of holo-CSN exclusive (CSN7A) and shared subunit (CSN8) by immunoblotting. For full immunoblotting data (CSN1, CSN3, CSN4, CSN5, CSN7A, and CSN8),
see Appendix Fig S7C).

D CSN1/3/8 display distinct fractionation patterns in co-fractionation experiments performed in other laboratories, specifically in orthogonal ion exchange fractionation
of HEK293 lysates (Wan et al, 2015, upper panels) and size exclusion chromatographic fractionation of U2OS lysates (Kirkwood et al, 2013, lower panel), in line with
the CSN1/3/8 as distinct entity.

E Baculoviral co-expression of human CSN1, CSN3, and CSN8 in Sf21VM insect cells, with CSN8 N-terminally Strep(II)- and CSN1 & CSN3 N-terminally His6-tagged,
followed by affinity purification and SDS–PAGE displays banding pattern in line with the formation of a stable trimer CSN1/3/8.

ª 2019 The Authors Molecular Systems Biology 15: e8438 | 2019 11 of 22

Moritz Heusel et al Complex-centric proteome profiling Molecular Systems Biology

Published online: January 14, 2019 

https://sec-explorer.ethz.ch/


is inspired by the peptide-centric analysis concept employed for the

specific and sensitive detection of peptides from proteomic samples

in targeted proteomic approaches, such as SWATH/DIA (Gillet et al,

2012), and extends the use of prior information for the analysis of

proteins to the level of protein complexes. Similar to peptide-centric

analysis of SWATH/DIA data, high selectivity and sensitivity are

A

B C 

Figure 6.
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achieved by focusing the analysis on analytes conceivably expected

in the sample when querying the protein co-fractionation data for

candidate protein complexes that are inferred from reference protein

interaction maps. Thereby, prior information significantly constrains

complex inference from co-fractionation profiling data and thus

adds specificity and the possibility to develop a target-decoy model

to assess the reliability of the obtained results. Furthermore,

complex identifications are directly linked to quantitative chromato-

graphic signals, a central feature of targeted proteomics approaches.

As technical advances, we demonstrate the benefits of SWATH/DIA

for the analysis of the sequential SEC fractions, introduce a freely

accessible computational framework CCprofiler, and provide a tool

facilitating the exploitation of complex-centric data, SECexplorer

(Fig 7).

In combination, these technical and conceptual developments

provide the following advances to the field of correlation profiling.

First, the preferable quantitative performance of SWATH/DIA

provides more complete and consistent sampling of the eluting

proteome, resulting in fewer gaps and noise in the recorded profiles.

This results in deeper insights into modular proteome organization,

including the detectability of low abundance complex intermediates.

Second, the use of prior information reduces false-positive assign-

ments of complex co-membership due to coincidental co-elution of

proteins that do in reality not interact. Third, the CCprofiler pipeline

introduces the first statistical target-decoy model to tightly control

error rates in the inference of complexes from co-fractionation pro-

filing experiments and represents a comprehensive, open-source

platform to support complex-centric profiling of proteomes, irre-

spective of the fractionation method used. Fourth, the efficiency of

information retrieval and thus overall method throughput is drasti-

cally increased when compared to current co-fractionation-based

complex analyses, generating comprehensive and accurate assess-

ments of proteome arrangement from an order of magnitude less

LC-MS experiments than necessitated earlier. Together, these

advances transform the SWATH/DIA-based complex-centric

proteome profiling into a robust, generally applicable technique

supported by a freely accessible computational framework.

We applied complex-centric profiling to a native protein extract

from exponentially growing Hek293 cells. Collectively, the results

demonstrate the superior performance of the technique compared to

the state of the art and provide new biological insights, as follows.

The analysis establishes estimates for the overall assembly state of a

human proteome—55% of inferred protein mass and two-thirds

(66%) of the observed protein species appear engaged in higher

order assemblies; a lower-boundary estimate given inevitable losses

of associations in the experimental procedure. Besides detecting

cumulatively 462 cellular complexes upon targeted analysis, the

method in many instances resolves distinct variants of the expected

complexes, such as sub-complexes that elute independently from

the chromatographic column. While sub-complex signals may origi-

nate from artifactual disruption of cellular complexes, we demon-

strate in two cases that orthogonal pieces of evidence can build

confidence in the biological relevance of substructures assigned

from defined subunit co-elution. First, we identified a new complex

CSN1/3/8 as a sub-complex of the COP signalosome (CSN) holo-

complex that elicits crucial regulatory functions toward E3 ligase

complexes and the ubiquitin proteasome system (Dubiel et al,

2015). It is tempting to speculate that a putative function of the

CSN1/3/8 sub-complex could be the negative regulation of CSN

holo-complex activity, due to the fact that the sub-complex incorpo-

rates the subunit CSN1 which is involved in substrate recognition

(Cavadini et al, 2016), but does not contain the catalytically active

CSN5 subunit. CSN5 embodies the de-neddylation activity to the

CSN holo-complex (Cavadini et al, 2016). CSN1/3/8 may potentially

sequester neddylated E3 CRLs from CSN-mediated de-neddylation

and thus affect their lifetimes and overall activity profiles. In a

second example, complex-centric analysis in combination with

manual refinement identified early and late assembly intermediates

on the path toward the 20S proteasome particle based on defined

co-elution of the respective assembly chaperones. Strikingly, the

early and late intermediary complexes assigned (early: a1/a3/a4/
a5/a7, late: a1–7/b2/b3/b6/b7) collide with current models of the

temporal order of subunit assembly (Hirano et al, 2008; Im &

Chung, 2016; for a graphical summary, see Fig 6B, lower panel).

Current models entail early a-ring intermediates lacking subunits a3
and a4 (Hirano et al, 2005). In contrast, our model suggests assem-

bly of pre-a-ring intermediates composed of subunits a4, a7, a5, a1,
and a3 (forming a connected substructure of the a-ring in this

order; Huang et al, 2016) that lacks subunits a2 and a6. These

join thereafter to complete the a-ring, under involvement of the

chaperone POMP/hUmp1. Current models further suggest that

ordered b-ring assembly scaffolded by a-rings in the sequence of

b2, b3, b4, b5, b6, b1, and lastly b7 (Hirano et al, 2008; Im &

Chung, 2016) help overcome a POMP-dependent checkpoint for

dimerization into the mature 20S particle (Li et al, 2007). The

detection of late assembly intermediate a1–7/b2/b3/b6/b7 in our

data suggests an alternate sequence of assembly with early incor-

poration of subunit b7 and dimerization after the recruitment of

subunits b1, b4, and b5.
These insights into complex biogenesis could prove valuable, for

example, in the design of future therapeutic strategies aiming to

counteract elevated proteasome expression and activity that has

been associated with cancer pathobiology (Voutsadakis, 2017). This

is exemplified by current attempts to target proteasomal activity via

◀ Figure 6. Complex-centric detection of 20S proteasome assembly intermediates.

A Protein-level SEC chromatograms of the 22 canonical 26S proteasome subunits. Vertical black lines indicate the apexes of six distinct co-elution signals detected in
complex-centric scoring; two of which represent well-known co-occurring variants, the full 26S (i) and the 20S (ii) particle devoid the 19S lid and ATPase (Indicated by
structural models, PDB accession 5GJR) and four of which, composed of predominantly 20S a and b subunits, appear at reduced size (222–107 kDa, fractions 39, 40,
42, and 46). The observations are consistent between the two whole workflow replicates (see Appendix Fig S6B).

B Zoom into chromatograms of 20S components in full and reduced MW range and in the context of chaperones known to be involved in assembly according to the
current model of 20S biogenesis (lower panel, assembled after Saeki & Tanaka (2012) and PDB accession 5GJR), colored by protein class. Reduced MW species are
classified into early and late assembly intermediates (as opposed to artifacts of disassembly) by defined co-elution of early assembly chaperone PSMG3/PSMG4 dimer,
late assembly chaperone proteasome maturation protein POMP, and constitutive chaperone PSMG1/2 dimer.

C Subunit mass distribution across early and late assembly intermediate elution ranges suggests predominant components of the intermediary species accumulating in
HEK293 cells.
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the chaperone POMP (Goldberg et al, 2015; Fig 6C). We expect that

the data generated by complex-centric proteome profiling will lead

to the discovery of other instances of characteristic protein

complexes and sub-complexes and thus trigger research into their

functional roles.

Despite the advances and benefits of complex-centric proteome

profiling by SEC-SWATH-MS, the method has a number of limita-

tions. (i) The balance of stability of complexes and extractability in

native form. Inevitably, associations are lost in the experimental

procedure, most notably upon dilution imposed during lysis and
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Figure 7. SECexplorer tool for customized interrogation of SEC-SWATH elution profiles.

A SECexplorer web interface for querying custom protein sets for co-elution behavior in the SEC-SWATH-MS data, viewing chromatograms for interpretation and with
algorithmic assistance.

B Zoom into high MW peak shoulder of holo-COP9 signalosome (compare Fig 5), where defined co-elution signals of CSN substrate components CUL4A and DDB2
suggest the partial resolution of substrate-bound and free pools of CSN holo-complex.

C Estimation of the fraction of holo-CSN in the likely substrate-bound pool vs. the free pool, with eight measurements along the eight subunits and based on Gaussian
deconvolution of two signals underlying the observed peak and shoulder (also see Appendix Fig S7).
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subsequent size exclusion chromatography, reducing protein

concentration by ca. five orders of magnitude from the cellular envi-

ronment (ca. 300 mg/ml; Milo, 2013) to the conditions on the SEC

column (ca. 0.06 mg/ml). Consequently, complex detectability is

limited by thermodynamic stability and despite best efforts toward

minimizing complex disintegration (fast processing in the cold and

analyte adsorption-free chromatography), thermodynamically labile

interactions, particularly those with fast off-rates, are likely inacces-

sible by correlation profiling methods, including complex-centric

proteome profiling. While first studies have evaluated chemical

crosslinking as means to stabilize cellular modules for chromato-

graphic analyses (Larance et al, 2016), it remains an open challenge

to identify uniformly beneficial crosslinking reagents and reaction

conditions that yield optimal balance between stabilization of

biologically relevant structures and artifactual crosslinking across

the full range of protein expression in the cell (Leitner et al, 2016)

and thus do not introduce new experimental bias. (ii) In addition to

a bias toward thermodynamically stable complexes, the applied

SEC-SWATH-MS workflow enriches for cytosolic proteins, while

membrane-associated proteins are underrepresented compared to

the full human genome (see Appendix Fig S4C). (iii) Complex-

centric proteome profiling is limited to the scope of the prior knowl-

edge on protein association employed. However, continued efforts

to map cellular protein association space (Huttlin et al, 2017) and

computational integration of multiple lines of experimental evidence

(Drew et al, 2017) will continually improve the quality and

completeness of the prior knowledge useable as input to targeted,

complex-centric analyses. Extended reference protein interaction

maps will support near-complete mapping of the complexes detect-

able in co-fractionation experimental data in the near future,

supported by scalability of the target-decoy statistical model. That

being said, the statistical model itself is limited to the assignment of

an FDR on the evidence of detection of defined complexes in the

complex query set. Future improvements could potentially support

a robust statistical model covering also post-processing steps, such

as collapsing of detected features across multiple complex query sets

to unique co-elution signals.

SEC-SWATH-MS accelerates the mapping of cellular complexes.

Whereas the method yields a similar coverage of complexes

compared to state of the art at over fourteen times less LC-MS injec-

tions, it still required 81 fractions to be analyzed at 2-h gradient time

per fraction, culminating in 162 h of net MS acquisition time. This

fact limits the scope for cohort studies. However, this issue may

well be alleviated soon, given anticipated improvements SWATH/

DIA sample throughput with minimal loss of protein coverage that

seem achievable because in SWATH/DIA acquisition the number of

analytes quantified does much less strongly depended on gradient

length than is the case for DDA acquisition. As a consequence of the

high quantitative accuracy of the SEC-SWATH-MS data and

targeted, error-controlled complex centric analysis, this study lays

the foundation to confidently assess proteome organization and to

conclusively follow its dynamics as a function of cell state. Ulti-

mately, extensions of our workflow will support the detection of

subtle re-arrangements within proteomes that occur in response to

perturbation or along central biological processes. Such insights

will help foster our understanding of the importance of higher

order organization of the parts to convey plasticity and regulation

to cellular systems.

Materials and Methods

Preparation of native HEK293 proteome and fractions for
MS analysis

HEK293 cells were obtained from ATCC and cultured in DMEM

containing 10% FCS and 50 lg/ml penicillin/streptomycin to 80%

confluency. Ca. 7e7 cells were mildly lysed by freeze–thawing into

0.5% NP-40 detergent- and protease and phosphatase inhibitor

containing buffer, essentially as described (Collins et al, 2013),

albeit without the addition of avidin. Lysates were cleared by

15 min of ultracentrifugation (100,000 × g, 4°C), and buffer was

exchanged to SEC buffer (50 mM HEPES pH 7.5, 150 mM NaCl)

over 30-kDa molecular weight cutoff membrane at a ratio of 1:50

and concentrated to 25–30 mg/ml (as judged by OD280). After

5 min of centrifugation at 16.9 × g, 4°C, the supernatant was

directly subjected to fractionation on a Yarra-SEC-4000 column

(300 × 7.8 mm, pore size 500 Å, particle size 3 lm, Phenomenex,

CA, USA). Per SEC run, 1 mg native proteome (by OD280) was

injected and fractionated at 500 ll/min flow rate at 4°C, collecting

fractions at 0.19 min per fraction from 10 to 28 min post-injection,

fractions 3–83 of which were considered relevant proteome elution

range and considered for further analysis with fractionation index

1–81. The fractions collected from two consecutive SEC fractiona-

tions of the same extract (2 × 1 mg) were pooled for subsequent

bottom-up proteomic analysis. Apparent molecular weight per frac-

tion was log-linearly calibrated based on column performance check

protein mix analyzed prior and after each experimental replicate

(AL0-3042, Phenomenex, CA, USA). An aliquot of the unfraction-

ated mild proteome extract was included in peptide sample prepara-

tion and LC-MS analysis. Proteins were proteolyzed to peptide level

by trypsin digestion (Promega V5111) in the presence of 1% sodium

deoxycholate (Sigma-Aldrich D6750), reduced, alkylated, and de-

salted on C18 reversed phase (96-Well MACROSpin Plate, The Nest

Group, MA, USA), and each sample was supplemented with equal

amounts of internal retention time calibration peptides (iRT kit,

Biognosys, CH).

Baculoviral co-expression and co-purification

Sf21VM Cells were maintained in ExCell420 Medium in Erlenmeyer

culture flasks shaking at 27.5°C. Human COP9 signalosome subunits

bearing N-terminal Strep(II) or His6 tags were co-expressed by co-

infection of Sf21VM cells with three baculoviral vectors obtained

from Lingaraju et al (2014). After 48 h, cells were mildly lysed and

COP9 signalosome subunits and complexes differentially affinity-

purified on StrepTactin and Ni-NTA-coated magnetic beads (Qiagen)

followed by bead boiling in SDS loading buffer and subunit detec-

tion via SDS–PAGE and InstantBlue staining (Expedeon). Subunits

were identified by size and in reference to individual expression and

in-gel detection.

MS analysis

LC-MS analysis of peptide samples was performed in both DDA and

SWATH/DIA acquisition mode on an AB Sciex TripleTOF 5,600+

instrument (AB Sciex, MA, USA), side-by-side per sample, sliding

from early to late-eluting fractions. Online reversed phase
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chromatography fractionated peptide samples delivering at 300 nl/

min flow a 120-min gradient from 2 to 35% buffer B (0.1% formic

acid, 90% acetonitrile) in buffer A (0.1% formic acid, 2% acetoni-

trile) on a self-packed picoFrit emitter packed with 20 cm column

bed of 3 lm 200-Å Magic C18 AQ stationary phase, essentially as

described (Gillet et al, 2012; Collins et al, 2013). In data-dependent

acquisition (DDA), MS1 survey spectra were acquired for the range

of 360–1,460 m/z with a 500 ms fill time cap. The top 20 most-

intense precursors of charge state 2–5 were selected for CID frag-

mentation and MS2 spectra were collected for the range of 50–

2,000 m/z, with 100 ms fill time cap and dynamic exclusion of

precursor ions from reselection for 15 s, essentially as described

(Collins et al, 2013).

Data-independent acquisition (SWATH/DIA) mass spectrometry

was performed using an updated scheme of 64 variably sized

precursor co-isolation windows optimized for human cell lysate MS

signal density (SWATH� 2.0, essentially as described; Collins et al,

2017). SWATH cycles (64 × 50 ms accumulation time) were inter-

spersed by MS1 survey scans for the range of 360–1,460 m/z with a

250 ms fill time cap, resulting in an overall period cycle time of

3,498 ms. The MS2 mass range was set to 200–2,000 m/z.

Data processing

Spectrum-centric analysis of DDA-MS data

For MS1 and spectral count-based quantification as basis for

complex-centric analysis, the DDA-MS data were processed using

the MaxQuant software package (version 1.5.3.17) with the

human canonical SwissProt reference database (build Aug-2014),

standard parameters and variable methionine oxidation and N-

terminal acetylation enabled. Match between runs was enabled to

facilitate ID transfer and more consistent MS1 quantification

(from and to) between adjacent fractions. Raw peptide MS1

intensities of individual peptide precursor signals were further

considered. For the generation of the peptide query parameter

library employed for targeted analysis of the SWATH/DIA data,

DDA-MS data were processed as described (Rosenberger et al,

2014).

Peptide-centric analysis of SWATH/DIA data

SWATH/DIA data were analyzed via targeted, peptide-centric analy-

sis, querying 204,545 precursors based on the combined human

assay library (CAL; Rosenberger et al, 2014) in the SWATH frag-

ment ion chromatograms, using a modified OpenSWATH (Röst

et al, 2014), PyProphet (Reiter et al, 2011; Teleman et al, 2015),

and TRIC (Röst et al, 2016) workflow and the iPortal framework

(Kunszt et al, 2015). Specifically, a global PyProphet scoring func-

tion was trained on a master sample of the unfractionated HEK293

lysate with tryptic digest and SWATH/DIA data acquisition equiva-

lent to the fractionated samples. PyProphet subscores employed

were MPR_VARS = library_corr yseries_score xcorr_coelution_weig

hted massdev_score norm_rt_score library_rmsd bseries_score int

ensity_score xcorr_coelution log_sn_score isotope_overlap_score

massdev_score_weighted xcorr_shape_weighted isotope_correlatio

n_score xcorr_shape. The subscore weights learned on the master

sample were fixed and applied to score the fragment ion chro-

matogram peak groups across the SWATH data acquired from all

81 SEC fractions and one master sample. OpenSWATH

pipeline parameters employed were WINDOW_UNIT = Thomson,

EXTRACTION_WINDOW = 0.05, RT_EXTRACTION_WINDOW = 600,

MPR_MAINVAR = xx_swath_prelim_score, MPR_NUM_XVAL = 10.

Internal iRT calibration was performed as previously described (Röst

et al, 2014) with MIN_COVERAGE = 0.6, MIN_RSQ = 0.95. Within

the workflow, the resulting quantitative matrix was further processed

using TRIC (Röst et al, 2016) retention time alignment to improve

identification consistency and sensitivity with the following parame-

ters: ALIGNER_TARGETFDR = 0.05, ALIGNER_METHOD = global_

best_overall, ALIGNER_REALIGN_METHOD = splineR_external, AL

IGNER_MAX_RT_DIFF = auto_3medianstdev, ALIGNER_DSCORE_C

UTOFF = 1, ALIGNER_FRACSELECTED = 0. To achieve an estimated

global precursor or peptide query level FDR of 5%, only peak groups

achieving an m-score of 0.00393943 in any of the runs were consid-

ered as seeds for alignment. Signals up to an m-score threshold

of 0.05 were aligned, resulting in 97941 precursors quantified

in at least one sample. From the resulting data matrix

(E1605191849_feature_alignment.tsv), the master sample was

removed and the “raw” precursor-level quantitative data along

the 81 SEC fractions were further processed within the CCpro-

filer framework.

Data preprocessing in CCprofiler

The raw precursor-level quantitative data from the peptide-centric

analysis pipeline above were next imported into CCprofiler, includ-

ing preprocessing for subsequent analysis steps, including (i)

removing non-proteotypic evidence, (ii) summing precursor signals

per peptide to generate peptide-level quantitative profiles (i.e.,

“peptide traces”), (iii) filtering the data based on chromatography-

informed scores to perform protein-level error estimation and

control, and (iv) to infer protein-level quantitative profiles (i.e.,

“protein traces”).

Import to peptide traces The precursor-level data were imported

into the CCprofiler framework by applying the importFromOpenS

WATH function with following parameters: annotation_table = exa

mpleFractionAnnotation, rm_requantified = TRUE, MS1Quant = F

ALSE, rm_decoy = FALSE. During import, non-proteotypic evidence

is removed and multiple precursor signals are summed to peptide

level, generating a peptide-level quantitative profiles (or: peptide

traces) stored in a unified data container of class “traces”. Subse-

quently, the peptide traces were annotated with protein molecular

weight and further information from the UniProt database (hu-

man9606, download on 30.11.2016) applying the annotateTraces

function with following parameters: trace_annotation = examp

leTraceAnnotation, traces_id_column = “protein_id”, trace_annota

tion_id_column = “Entry”, trace_annotation_mass_column = “Mas

s”, uniprot_mass_format = TRUE, replace_whitespace = TRUE. The

peptide traces generated here are not yet strictly FDR-filtered and

thus represent a “raw” set of signals subject to further processing,

see below.

External calibration of SEC apparent molecular weight To support

downstream estimation of complex assembly states, the apparent

molecular weight at each SEC fraction was calibrated based on the

elution apex fraction numbers of a external standard set of reference

proteins fractionated on the same SEC setup, side-by-side with the

HEK293 lysate fractionations. The apparent molecular weight is
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calibrated using a log-linear relationship by applying the function

calibrateMW using the CCprofiler exampleCalibrationTable contain-

ing apex fraction number and known molecular weight of the refer-

ence protein set (see Appendix Fig S3), followed by adding the

apparent molecular weight information into the peptide traces

object using the annotateMolecularWeight function.

SEC-informed data filtering, FDR control, and protein quan-
tification to protein traces The peptide traces to this point have

been generated under relatively relaxed FDR and related score

cutoff criteria to ensure maximal sensitivity of analyte retrieval. To

ensure highest possible data quality, protein-level error control is

postponed to this later stage in order to leverage additional infor-

mation available through SEC fractionation for optimized protein

analyte validation. We filter the peptide-level data based on SEC-

informed filters regarding (i) the length of coherent identification

stretches along consecutive SEC fractions and (ii) peptides’ quanti-

tative fractionation pattern similarity to those of its sibling peptides

(originating from the same parent protein). We monitor the impact

of filtering on the decoy-estimated FDR on protein level by the

TDA (Choi & Nesvizhskii, 2008) while accounting for the fraction

of false targets on the protein level, also referred to as percentage

of incorrect targets (PIT; Käll et al, 2008) or [pi0] (Storey, 2002).

We estimated the protein-level FFT in a two-step-procedure. First,

the protein-level FFT can conservatively be approximated by the

precursor-level FFT (or: pi0) estimated via the q-value approach in

PyProphet-based analysis of the unfractionated HEK293 lysate

master sample analyzed in triplicate. Using the assess_fdr_overall

function of R/SWATH2stats (Blattmann et al, 2016) and the aver-

age precursor-level FFT/pi0 estimated by PyProphet/qvalue, the

maximal number of true targets can be estimated. Subsequently,

the resulting fraction of false target proteins given all target

proteins contained in the query library employed can be inferred,

with 52.57861% of the targeted proteins from the CAL likely not

being represented in the global, unfractionated HEK293 lysate

sample set. The thus derived protein-level FFT of 0.5257861 is then

used to correct the decoy-counting-based FDR estimates. The anno-

tated “raw” peptide traces were then filtered based on consecutive

identification and sibling peptide correlation that leverages the

extra information gained by sample fractionation. The filterConsec-

utiveIdStretches function was run with a min_stretch_length of 3.

The filterBySibPepCorr function was run with following parameters:

fdr_cutoff = 0.01, fdr_type = “protein”, FFT = 0.5257861. As a

result, peptides with average sibling peptide correlation coefficient

(spc) below 0.316 were discarded in order to achieve an estimated

FDR of < 1% among the remaining 4,958 proteins. The proteins

are then quantified based on summing the top2 peptides with high-

est cumulative signal intensity across the 81 fractions, generating

the final protein-level quantitative data matrix by applying the

proteinQuantification function with the options: topN = 2, keep_

less = FALSE, rm_decoys = TRUE. The resulting final protein

traces entail 4,916 proteins quantifiable with at least two proteo-

typic peptides and form the basis for complex-centric exploration,

searching the data for hypothetical complexes inferred from public

protein interaction databases.

In addition to complex-centric exploration of the protein-level

traces, the filtered peptide traces (N = 58,792) are directly employed

to detect of protein elution events from the SEC column (also termed

“protein features”) based on sibling peptide co-peaking in the SEC

dimension, performed in the protein-centric analysis module within

CCprofiler.

Protein-centric detection of protein elution in SEC via CCprofiler

To evaluate complex assembly behavior of each protein individu-

ally, we employ the targeted analysis concept and CCprofiler algo-

rithm to detect distinct protein elution events from the SEC column

(also termed “protein features”). Protein elution is detected based

on based on sibling peptide co-peaking “features” in the SEC dimen-

sion, based on the protein–FDR-filtered peptide traces (N = 58,792)

grouped by parent protein and detecting elution signals via the

CCprofiler algorithm. Algorithm parameters were aligned to the

parameters optimized for complex-centric analysis reasoning that

correlation signal and peak width properties are generic attributes of

the co-fractionation data, regardless of the analyte level. Protein

features were detected applying findProteinFeatures with following

parameters: corr_cutoff = 0.95, window_size = 8, parallelized = TR

UE, n_cores = 30, collapse_method = “apex_only”, perturb_cutof

f = “5%”, rt_height = 3, smoothing_length = 9, useRandomDecoy

Model = TRUE. These parameters correspond to the optimal param-

eters selected for the dataset with a grid search of the parameter

space that was evaluated by performance metrics based on the

complex-level analysis and target-decoy strategy (see below). All

protein elution features were scored by calculateCoelutionScore and

q-values were estimated applying calculateQvalue (lambda = 0.5).

The results were filtered for a maximal q-value of 0.1, corresponding

to an FDR of 10%.

Complex-centric detection of complex elution via CCprofiler

The core module of complex-centric proteome profiling is complex-

centric query of hypothetical complexes inferred from public data-

bases in the protein-level quantitative fractionation profiles (protein

traces). The necessary steps are (i) formulation of protein complex

queries from public databases, (ii) formulation of decoy complex

queries to model and control error rates, (iii) optimization of

processing parameters in a grid search using a subset of complex

queries, (iv) detection and statistical scoring of complex subunit co-

elution evidence (“complex features”) across all queries, and (v)

collapsing of overlapping and redundant co-elution evidence to

delineate complexes and complex families with defined co-elution

of subunits in SEC.

Complex query formulation/generation from public databases A

crucial step in complex-centric proteome profiling is the definition

of target queries. Here, protein complex queries were generated

based on CORUM (Ruepp et al, 2010), BioPlex (Huttlin et al, 2015),

and StringDB (Franceschini et al, 2013).

Complexes annotated in CORUM were processed by merging

redundant entries, removing homo-oligomers and resolving alter-

native subunit participation into complex variants (labeled -1,-2,

etc.).

For generating queries based on the BioPlex interaction network,

BioPlex_interactionList_v2.tsv was downloaded from http://biople

x.hms.harvard.edu (Oct. 2016; Huttlin et al, 2015) and protein

isoforms (UniProt accession -1, -2, etc.) were collapsed to the canon-

ical Uniprot accessions by deleting the isoform specifiers and remov-

ing redundant edges. Pathlengths between any protein pair within
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the network were calculated by calculatePathLength and queries

were generated by applying generateComplexTargets with following

parameters: max_distance = 1, redundancy_cutoff = 0. Unknown

UniProt ids were removed.

StringDB complex queries were generated based on StringDB

v10 (9606.protein.links.v10.txt). Protein identifiers were mapped

to Uniprot accessions via BioMart. The interactions were filtered

for a minimal combined_score of 900. Pathlengths between any

protein pair within the network were calculated by calcu-

latePathLength and complex queries were generated by applying

generateComplexTargets with following parameters: max_dis-

tance = 1, redundancy_cutoff = 0. NAs were removed prior to the

complex query generation.

Decoy complex query generation In order to enable an automated

error estimation of the complex-centric feature finding a decoy

complex query is generated for each target. For all three protein

complex query sets, decoys were generated separately, by first creat-

ing a binary network based on the respective complex queries

(generateBinaryNetwork), followed by pathlength calculation (calcu-

latePathLength). The decoys were generated by generateCom-

plexDecoys with n_tries = 3, append=TRUE, and dist = 2 for

CORUM and BioPlex and dist = 1 for StringDB.

Parameter optimization for complex feature finding (grid search)
Optimal parameters for complex feature finding in the HEK293

SEC-SWATH-MS dataset were determined by a complex-centric

feature finding grid search based on the CORUM complex queries,

as implemented in performComplexGridSearch. Following parame-

ters were tested: corrs = c(0.7, 0.8, 0.9, 0.95), windows = c(8, 10,

12), smoothing = c(5, 7, 9), rt_heights = c(3, 5). Only the best,

most complete complex feature for each tested complex query was

considered (getBestFeatures). Scores were calculated for each

parameter set by calculateCoelutionScore and calculateQvalue

(lambda = 0.5). The best parameter set is selected by only consid-

ering parameter combinations that achieve a decoy-based FDR

below a selected threshold, followed by taking the set that resulted

at the highest number of detected features. These statistics for

each parameter set were determined by qvaluePositivesPlotGrid

and the optimal parameter set was selected by getBestQ-

valueParameters (FDR_cutoff = 0.05). The optimal parameters

relating to chromatography and noise in the dataset are employed

also for the task of protein-centric detection of protein elution

from peptide-level traces (see above). We expect transferability

because chromatographic parameters such as resolution in SEC are

specific to the dataset and differences in noise levels should be

neglectable when moving from protein profiles based on two

peptides back to individual peptide signals. In complex-centric

analysis, the optimal parameter identified based on a subset of

complex queries is then employed to detect protein co-elution

signals for the full set of complex queries in the global complex

feature detection step.

Global complex feature detection The optimal parameter set deter-

mined in the complex feature finding grid search explained above

was used to detect complex features for all three complex query sets

based on CORUM, BioPlex, and StringDB. The findComplexFeatures

function was applied with following parameters: corr_cutoff = 0.95,

window_size = 8, parallelized = TRUE, n_cores = 30, collapse_met

hod = “apex_network”, perturb_cutoff = “5%”, rt_height = 3, smo

othing_length = 9. The resulting protein complex features were initi-

ally filtered to contain only elution features eluting at a higher molec-

ular weight than 2-times the molecular weight of the largest

monomer across all complex subunits, filterFeatures: complex_id

s = NULL, protein_ids = NULL, min_feature_completeness = NULL,

min_hypothesis_completeness = NULL, min_subunits = NULL, mi

n_peak_corr = NULL, min_monomer_distance_factor = 2.

For scoring and statistical evaluation, only the best, most

complete complex elution feature was selected per complex

query (getBestFeatures). Scores and q-values were determined by

calculateCoelutionScore and calculateQvalue (lambda = 0.5). The

results were subsequently filtered for a maximal q-value of 0.05,

corresponding to an FDR of 5%. The analyses yield co-elution

evidence for 572, 951, and 1,810 complex queries from CORUM,

Bioplex, and StringDB, respectively, which then needs to be

integrated to remove redundancies in order to identify unique,

chromatographically resolved co-elution groups representing

distinct complexes or complex families. Alternatively, individual

complex signal sets can be interrogated for the retrieval of

chromatographically resolved complex variants, e.g., assembly

intermediates.

Detection of complex variants To investigate complex variants,

such as assembly intermediates, the initial set of all detected co-

elution features was filtered for complex queries whose best

detected co-elution feature managed the 5% FDR cutoff. All

secondary features were subsequently filtered manually for a

minimum peak correlation of 0.5. Applying these criteria, the

analysis recovers two or more distinct co-elution signals for

nearly half the CORUM complexes covered (N/M). While many

of the recovered signals represent actual distinct complex vari-

ants, we suggest special care and in-depth investigation when

interpreting individual cases of multi-complex-feature queries,

similar to the evaluation of COP9 signalosome and 20S protea-

some subversions presented in the main text of the paper. We

particularly encourage the use of SECexplorer to cross-reference

putative complex variant signals with further proteins known to

engage in physical interactions with the protein set in question to

help strengthen or disqualify the complex query extractable from

the dataset at hand.

Collapsing of co-elution features to unique signals Separate

complex-centric analysis of the CORUM, BioPlex, and

StringDB-derived sets of complex queries retrieves co-elution

evidence for 572, 951, and 1,810 queries, respectively. In

order to identify unique, chromatographically resolved

co-elution groups representing distinct complexes or complex

families, the signal sets need to be integrated and collapsed

to unique signals.

To perform feature collapsing, only the best, most complete co-

elution signal per complex query was used for CORUM, BioPlex, and

String results, each independently filtered for 5% estimated FDR.

Complex features were mapped by getUniqueFeatureGroups with

following parameters: rt_height = 3, distance_cutoff = 1.25. The

collapsing was then performed by applying callapseByUniqueFea-

tureGroups, rm_decoys = TRUE.
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Benchmarking

CCprofiler performance against manual annotation We bench-

marked the performance of the automated CCprofiler analysis

against manual analysis of a curated reference set of chromato-

graphically co-eluting proteins that are annotated in the CORUM

knowledgebase as subunits of well-defined complexes (Ruepp et al,

2010). During manual annotation, all complexes in CORUM for

which at least 50% of their subunits were MS-observable in our

HEK293 SEC-SWATH-MS data, were manually annotated for

complete or partial co-elution peak groups. Because co-elution

signal quality is very heterogeneous, we further classified the manu-

ally curated, true-positive co-elution signals into high-quality

signals, characterized by large signal-to-noise and near-Gaussian

peak shape (Phigh), and lower-confidence positives, characterized by

lower signal-to-noise and/or poor peak shape (Plow). All complex

queries for which no co-elution peak were visible in manual inspec-

tion were marked as negatives. Indeed, high-quality signals were

more effectively recovered in algorithmic processing (compare

Fig 2A, true-positive rate plot).

The manual annotation was taken as reference set to test the

performance of the CCprofiler algorithm. Both the true-positive rate

(TPR) and FDR were taken as measures of the performance of

CCprofiler compared to the manual analysis.

TPRall ¼ TPall

ðPhigh þ PlowÞ

TPRhigh ¼ TPhigh

Phigh

Here, TPall is the number of complex queries with an automati-

cally detected feature that also got manually annotated as high- or

low-confidence positive (Phigh or Plow). TPhigh is the number of

complex queries with an automatically detected feature that also got

manually annotated as high-confidence positive (Phigh).

The manual annotation-based FDR was estimated as follows:

FDRmanual ¼ ðTall � TPallÞ
Tall

Here, Tall is the total number of complex queries with a detected

feature from CCprofiler (true positives plus false positives).

Complex-centric profiling performance comparison to complexes
reported by Havugimana et al (2012) and Larance et al (2016) To
demonstrate the broad coverage of protein complex signals achiev-

able with our new complex-centric profiling approach, we compared

the complex identification performance with that of (i) a reference

chromatographic complex analysis workflow implemented by

Havugimana et al (2012) that depends on multidimensional frac-

tionation of native complexes and (ii) a reference set of complexes

reported by Larance et al (2016) that we have further analyzed by

complex-centric analysis using StringDB as prior connectivity infor-

mation (Fig 2B).

For this comparison, we calculated an overlap score for each

complex in the CORUM set of reference complexes for each of the

compared datasets.

overlap ¼ maxðn subunitssharedÞ
n subunitsCORUM

Here, n_subunitsCORUM is the number of subunits annotated in a

given CORUM reference complex and max(n_subunitsshared) is the

maximum number of subunits annotated in the CORUM reference

complex that are reported as co-complex members by our complex-

centric profiling strategy or the other datasets respectively.

For our complex-centric profiling strategy, we took the complex

features derived from complex-centric analysis with CCprofiler of

StringDB-derived complex queries. For Havugimana et al, all of

their 622 reported complexes were taken. For Larance et al, both

their reported 475 complexes and the complexes derived from

complex-centric analysis with CCprofiler usingStringDB prior

connectivity information were considered.

The number of retrieved CORUM complexes was determined by

counting the number of CORUM reference complexes with a mini-

mal overlap of 0.5.

SEC-DDA-MS data analysis in CCprofiler

DDA-MS data were processed using the MaxQuant software package

(Cox & Mann, 2008; version 1.5.3.17) with the human canonical

SwissProt reference database (build Aug-2014), standard parameters

and variable methionine oxidation and N-terminal acetylation

enabled. Match between runs was enabled to facilitate ID transfer

and more consistent MS1 quantification (from and to) between adja-

cent fractions. For “MS1” quantification, raw peptide MS1 intensi-

ties of individual peptide precursor signals were further considered

and the top2 most-intense peptide’s signals summed to protein

level, equivalently to the rules employed for SWATH data analysis.

For “SpectralCount” quantification, all spectra counted for a given

peptide per fraction were used.

For both DDA analysis result sets, a complex feature finding grid

search was performed to ensure optimal data processing (identical

strategy and parameters as for the SEC-SWATH-MS complex feature

finding grid search, see above). The optimal parameter set for

both the spectral counting and MS1 quantification dataset were then

used to perform complex feature finding, again with identical strat-

egy and parameters as for the SEC-SWATH-MS complex feature

finding (see above). The optimal parameters used for findCom-

plexFeatures in the spectral counting dataset were corr_cutoff = 0.7,

window_size = 8, parallelized = TRUE, n_cores = 30, collapse_

method = “apex_network”, perturb_cutoff = “5%”, rt_height = 5,

smoothing_length = 9. The optimal parameters used for findCom-

plexFeatures in the MS1 quantification dataset were corr_cut-

off = 0.7, window_size = 12, parallelized = TRUE, n_cores = 30,

collapse_method = “apex_network”, perturb_cutoff = “5%”, rt_height

= 3, smoothing_length = 9.

Complex-centric analysis of native SEC-DDA-MS data from Larance

et al (2016) in CCprofiler

The native SEC-DDA-MS data from Larance et al (2016) were down-

loaded from the original publication Supplementary Table 2 (http://

www.mcponline.org/lookup/suppl/doi:10.1074/mcp.O115.055467

/-/DC1/mcp.O115.055467-3.xlsx). In the case of protein groups,

groups were reduced to a single UniProt entry by keeping the first

protein only. Decoys were further removed from the dataset. The

raw protein intensities were summed across all three replicates to
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generate a single combined protein quantification matrix across all

40 measured SEC fractions.

Optimal parameters for complex feature finding in the native

SEC-DDA-MS dataset were determined by a complex-centric feature

finding grid search based on the CORUM complex queries, as imple-

mented in performComplexGridSearch. Following parameters were

tested: corrs = c(0.7, 0.8, 0.9, 0.95), windows = c(8, 10, 12),

smoothing = c(5, 7, 9, 11), rt_heights = c(1, 3, 5). The optimal

parameter set determined for an FDR_cutoff of 0.05 were corr_cut-

off = 0.95, window_size = 12, rt_height = 5, smoothing_length = 7.

Complex-centric analysis was performed with these parameters by

using both CorumDB and StringDB as prior connectivity informa-

tion. The results were similarly processed as for the SEC-SWATH-

MS dataset, achieving a 5% FDR for each complex query set respec-

tively.

Workflow replicate analysis

The whole workflow replicate R2, with measured SWATH-MS quan-

titative profiles between fraction 23 and 46, was processed in an

identical manner compared to workflow replicate R1. In contrast to

replicate R1, replicate R2 was not filtered for sibling peptide correla-

tion. Protein quantification was performed using the same two

peptides as selected for replicate 1, in order to be quantitatively

comparable.

Immunoblot analysis

To validate the mass spectrometric observation of two distinctly

eluting variants of the COP9 signalosome complex, we assayed CSN

subunits in the relevant fractionation range by immunoblotting from

two independent experimental replicates. 1 mg of HEK293 lysate

was fractionated as described above, and 20 ll per fraction (21%)

was submitted to SDS–PAGE (NuPage 4 to 12% Bis–Tris gel; Invitro-

gen), transferred onto a nitrocellulose membrane, and probed with

antibodies against CSN1 (EP15642-22, Abcam, 1:1,000), CSN3

(EPR3127, Abcam, 1:10,000), CSN8 (EPR5139, Abcam, 1:1,000),

CSN4 (EPR7453, Abcam, 1:1,000), CSN5 (EPR1350, Abcam,

1:1,000), and CSN7A (EPR6463, Abcam, 1:500) according to

supplier’s instructions. Bound antibodies were detected with HRP-

conjugated goat anti-rabbit IgG antibody (1:2,000, Cell Signaling)

and visualized with the Amersham, ECL Prime Western Blotting

Detection Reagent (GE Healthcare) according to the manufacturer’s

protocol.

Data and software availability

The datasets and computer code produced in this study are available

in the following databases:

(i) Mass spectrometry proteomics data: ProteomeXchange Consor-

tium PXD007038 (http://proteomecentral.proteomexchange.org)

(ii) CCprofiler package: GitHub (https://github.com/CCprofiler/CC

profiler/)

A detailed vignette describing the main functionalities and usage

of the software is provided in the Appendix and available from

within the CCprofiler R package.

Expanded View for this article is available online.
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