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Synthetic circuits reveal how mechanisms of gene
regulatory networks constrain evolution
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Abstract

Phenotypic variation is the raw material of adaptive Darwinian
evolution. The phenotypic variation found in organismal develop-
ment is biased towards certain phenotypes, but the molecular
mechanisms behind such biases are still poorly understood. Gene
regulatory networks have been proposed as one cause of
constrained phenotypic variation. However, most pertinent
evidence is theoretical rather than experimental. Here, we study
evolutionary biases in two synthetic gene regulatory circuits
expressed in Escherichia coli that produce a gene expression stripe
—a pivotal pattern in embryonic development. The two parental
circuits produce the same phenotype, but create it through dif-
ferent regulatory mechanisms. We show that mutations cause
distinct novel phenotypes in the two networks and use a combina-
tion of experimental measurements, mathematical modelling and
DNA sequencing to understand why mutations bring forth only
some but not other novel gene expression phenotypes. Our results
reveal that the regulatory mechanisms of networks restrict the
possible phenotypic variation upon mutation. Consequently, seem-
ingly equivalent networks can indeed be distinct in how they
constrain the outcome of further evolution.
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Introduction

The ability of biological systems to bring forth novel and beneficial

phenotypes as a consequence of genetic mutations is essential for

evolutionary adaptation and innovation. This ability is encapsu-

lated in the concept of evolvability (Kirschner & Gerhart, 1998;

Wagner, 2005b). Evolvability can be limited by evolutionary

constraints, which are biases or limitations in the production of

novel phenotypes (Smith et al, 1985). An example of such

constraints comes from laboratory selection experiments with

butterfly populations for enhanced wing eyespot colours (Allen

et al, 2008). Selection was able to increase the amount of black or

gold colouring in the two eyespots simultaneously, but was unable

to do so for the two different colours independently in the two

eyespots. Constrained variation can have multiple genetic and

developmental causes that can be difficult to disentangle in a

complex developing organism (Arnold, 1992; Wagner, 2011).

Therefore, few experimental demonstrations of evolutionary

constraints exist. What is more, 30 years after this concept rose to

prominence (Smith et al, 1985), we still do not understand the

mechanistic causes of evolutionary constraints.

The instructions for an organism’s development are encoded in

gene regulatory networks (GRNs)—networks of interacting tran-

scription factors that control gene expression in both time and

space (Davidson, 2006). Mutations in the cis-regulatory regions of

GRNs play an important part in evolutionary adaptation and inno-

vation (Prud’homme et al, 2007; Wray, 2007; Payne & Wagner,

2014). Examples include the evolution of the vertebrate spine

(Guerreiro et al, 2013), of wing pigmentation in butterflies

(Beldade & Brakefield, 2002) and of hindwing reduction in flies

(Carroll et al, 2001). GRNs are thus primary candidates for

systems that might lead to the production of constrained variation

(Gompel & Carroll, 2003; Sorrells et al, 2015). However, no experi-

mental work exists to find out whether GRNs might constrain
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novel gene expression phenotypes, and what the mechanistic

causes of such constraints might be. These questions require us to

study the relationship between genotypic and phenotypic changes

in GRNs. Computational models of gene regulation provide one

avenue to understand such genotype–phenotype maps (MacCarthy

et al, 2003; Wagner, 2005a; Ma et al, 2006; Ciliberti et al, 2007a,b;

Francois et al, 2007; Cotterell & Sharpe, 2010; Francois, 2014;

Payne & Wagner, 2015). Such models predict that GRNs with dif-

ferent topologies—qualitatively different patterns of interaction

between a GRN’s genes—can achieve the same gene expression

phenotypes, while they differ in their ability to bring forth novel

phenotypes through DNA mutations (MacCarthy et al, 2003;

Ciliberti et al, 2007a,b; Francois et al, 2007; Jimenez et al, 2015;

Payne & Wagner, 2015). However, experimental validation of the

latter prediction is still lacking.

To help fill the gaps in experimental evidence, we here use the

toolbox of synthetic biology. It allows us to create novel GRNs by

assembling well-characterised parts. We are therefore no longer

limited to studying GRNs in situ, that is, in one or few well-studied

organisms where influences of genetic background or environment

may be difficult to control. Instead, we can construct and modify

synthetic GRNs to understand the properties and potential of GRNs

to create novel phenotypes (Wall et al, 2004; Mukherji & van

Oudenaarden, 2009; Lim et al, 2013; Wang et al, 2016; Bodi et al,

2017; Davies, 2017). We previously built multiple 3-gene synthetic

networks that display the same gene expression phenotype, but

create this phenotype through different regulatory mechanisms

(Schaerli et al, 2014), where different regulatory dynamics and regu-

latory interactions among network genes result in different

spatiotemporal gene expression profiles (Cotterell & Sharpe, 2010;

Schaerli et al, 2014; Jimenez et al, 2015). The final phenotype is a

“stripe” of gene expression (low–high–low) along a spatial axis in

response to a chemical concentration gradient that is analogous to a

morphogen gradient in development. A GRN’s ability to “interpret”

a gradient by producing such stripes is crucial in the development of

many organisms and body structures, such as axial patterning of the

Drosophila embryo and vertebrate neural tube differentiation

(Stanojevic et al, 1991; Wolpert, 1996; Lander, 2007; Rogers &

Schier, 2011; Sagner & Briscoe, 2017). The question of which regula-

tory mechanisms can produce stripes is therefore itself crucial for

developmental genetics (Francois et al, 2007; Cotterell & Sharpe,

2010). Here, we go beyond this question to ask whether different

GRNs that have the same phenotype (a “stripe” of gene expression)

can produce different novel (i.e. “non-stripe”) gene expression

phenotypes in response to mutations, and if so, why.

Specifically, we use here two synthetic circuits that employ dif-

ferent regulatory mechanisms to produce a striped gene expression

pattern. Both of these circuits are hosted by Escherichia coli bacteria.

When these bacteria are grown as a lawn in the presence of a

concentration gradient of the morphogen analogue, they display a

spatially striped gene expression pattern (Fig 1C). We introduced

random mutations into the regulatory regions of these circuits and

analysed the resulting phenotypes. The two circuits indeed produce

a different spectrum of novel gene expression phenotypes. That is,

the gene expression variation they produce is constrained. To iden-

tify the mechanistic causes of these constraints, we combined exper-

imental DNA sequence and phenotypic data with a mathematical

model of gene expression dynamics.

Results

Two networks with distinct regulatory mechanisms differ in
their mutant phenotype distributions

Figure 1 shows the topologies (Fig 1A) and the molecular imple-

mentations (Fig 1B) of our two starting networks, which we had

constructed and characterised previously (Schaerli et al, 2014).

Briefly, their regulatory input is the sugar arabinose, which serves

as a molecular analogue of a developmental morphogen. The arabi-

nose is sensed by the arabinose-responsive promoter pBAD that acts

in a concentration-dependent manner. The observable network

output is fluorescence, which is produced by superfolder green fluo-

rescent protein (GFP; Pedelacq et al, 2006). Positive regulatory

interactions are encoded by T7 and SP6 phage RNA polymerases

(RNAPs), which start transcription at T7 or SP6 promoters, respec-

tively. Negative interactions are encoded by the transcriptional

repressors LacI (lactose operon repressor protein) and TetR (tetracy-

cline repressor). They inhibit transcription when bound to their

operator sites (LacO, TetO), which are placed downstream of

promoters. The two networks employ distinct mechanisms to

produce a gene expression stripe pattern (Cotterell & Sharpe, 2010;

Schaerli et al, 2014; Jimenez et al, 2015). We call these mechanisms

the “opposing gradients” and the “concurring gradients” mecha-

nisms. They essentially correspond to the well-studied type 2 and

type 3 incoherent feedforward motifs (FFM; Mangan & Alon, 2003;

see Box 1 for explanations). Figure 1C schematically shows the

temporal expression profiles of the three genes and their steady-

state profiles (last panel) of the three genes (colour-coded as in

Fig 1A) under varying arabinose concentrations, as previously

determined experimentally (Schaerli et al, 2014). Whereas the

opposing gradients mechanism is known to be involved in Droso-

phila melanogaster anterior–posterior patterning (hunchback,

knirps, krüppel; Jaeger, 2011), to the best of our knowledge the

concurring gradients mechanism has so far not been observed in a

natural stripe-forming regulatory network. However, previous stud-

ies added this network to the repertoire of possible stripe-forming

mechanisms (Rodrigo & Elena, 2011; Munteanu et al, 2014; Schaerli

et al, 2014).

We introduced mutations into the regulatory regions of these two

networks by replacing the wild-type regulatory sequence with semi-

randomised weighted oligonucleotides (Isalan, 2006). Resulting

average mutation rates per regulatory regions ranged from 2.6 to 3.5

mutations (mainly point mutations and < 5% of insertions and dele-

tions) per regulatory region with individual mutants carrying 1–9

mutations (Dataset EV1, Appendix Table S4). For each of our two

networks, we first generated three libraries of mutant networks in

which mutations were restricted to regulatory regions of the “red”,

“blue” or “green” gene (Fig 1). After plating cells from a population

whose members harboured a synthetic network variant, we

randomly picked colonies, grew them in liquid culture and

measured their GFP expression at low (0%), middle (0.0002%) and

high (0.2%) arabinose concentrations (Appendix Fig S1, Dataset

EV2). We classified the observed fluorescence phenotypes into six

categories (Fig 2A; see Materials and Methods for exact definitions):

“stripe”, “increase”, “decrease”, “flat” and “broken” (all expression

values below a threshold) and “other” (phenotypes that do not fall

in any of the previous categories).
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Figure 1. Topologies, synthetic implementations and expression profiles of the networks studied.

A Topologies of the networks using the opposing gradients (left) and concurring gradients (right) mechanisms. Arrow: activation; small horizontal arrow: constitutive
promoter; bar: repression; red: morphogen input receiver gene; blue: intermediate loop gene; green: stripe output gene.

B Synthetic implementations of the circuits (Schaerli et al, 2014). Open rectangle: open reading frame; filled rectangle: operator; bent arrow: promoter. All genes carry a
degradation tag [LVA (Andersen et al, 1998) or UmuD (Gonzalez et al, 1998)]. Indicated variants of T7 promoter, SP6 promoter and LacO were used (Schaerli et al,
2014). J23114 and J23100 are constitutive promoters (http://partsregistry.org/Promoters/Catalog/Anderson).

C Rectangles: Schematic drawings of spatiotemporal course of gene expression (colour-coded) as in (A) for the two networks (see Box 1). The expression level of the “green”
gene is the phenotypic “output” of the network. Corresponding simulations (Code EV1) are shown in Appendix Fig S7. Circles: bacterial lawns display green fluorescent rings
as a function of radial arabinose gradients from central paper discs (white). Images were taken 6 h after addition of arabinose. Figure adapted from Schaerli et al (2014).
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Figure 2B summarises the spectrum of phenotypes we observed

after mutagenesis. We first note that both networks are to some

extent robust to mutations; that is, a considerable fraction of muta-

tions do not change the “stripe” phenotype (black sectors in Fig 2B).

What is more, the two types of networks we study differ in their

robustness. Averaged across the three genes, 45.5% of analysed

mutants preserve the “stripe” phenotype in the concurring gradients

network, whereas only 32.9% do so in the opposing gradients

network. The concurring gradients network is thus significantly

more robust to mutations [Chi-square goodness-of-fit test, v2

(1, N = 215) = 13.67, P = 0.0002]. Next, we note that within any

one of the two networks the novel phenotypes do not occur at the

same frequency, providing evidence for the biased production of

novel phenotypes, where certain types of phenotypes are more

common than others.

We also observed differences in the types of novel phenotypes

between the two networks. For example, 8.2% of mutants of the

opposing gradients networks show a “flat” GFP expression pheno-

type, where the GFP expression is invariant to arabinose concentra-

tions (yellow sector in Fig 2B). In contrast, mutations in the

concurring gradients network did not produce a single such pheno-

type. In addition, mutations in the opposing gradients network are

more likely to create a “decrease” phenotype (purple, 29.8% of all

novel phenotypes) rather than an “increase” phenotype (orange,

15.4%). For the concurring gradients network, the opposite is true:

mutations are more likely to create “increase” (23.0%) rather than

“decrease” (18.1%) phenotypes.

Next, we analysed the GFP expression levels of the measured

phenotypes quantitatively (Fig 2C). To this end, we compared the

GFP expression at medium arabinose concentration to those at high

(y-axis) and at low arabinose concentrations (x-axis). We note that

the previously classified phenotypes (Fig 2A) form well-separated

clusters in this analysis. For example, networks in the bottom-right

quadrant correspond to “stripe” phenotypes, because their pattern

is described as an increase (positive x-axis) followed by a decrease

(negative y-axis) in expression. Consequently, “decrease” and

“increase” phenotypes occupy the upper-right and bottom-left quad-

rants, respectively. We also sequenced the mutated regulatory

regions of all analysed networks and find a weak association

between the number of mutations a network carries, and the extent

to which its observed phenotype differs from the starting “stripe”

phenotype (as quantified through the Euclidean distance;

Appendix Fig S2).

Subsequently, we analysed the differences in novel phenotypes

created by mutations in specific regulatory regions (i.e. of the “red”,

“blue” or “green” gene). Within any one of the two network types,

regulatory mutations in the “red” gene most often create “increase”

phenotypes (Fig 2D, pie charts left to the “red” genes), whereas

those in the “blue” gene most often create “decrease” phenotypes

(Fig 2D, pie charts at the bottom of the “blue” genes), and those in

the “green” gene preferably create “broken” phenotypes (Fig 2D,

pie charts to the right of the “green” genes). As a consequence, not

all phenotypes can be reached by introducing mutations in the regu-

latory region of any of the three genes. For example, in the opposing

gradient network, the “increase” phenotype is only reachable by

introducing mutations into the “red” gene, but not in the “blue” and

“green” genes.

The two networks differ in the spectrum of novel phenotypes

that mutations in individual genes create, which is especially obvi-

ous for mutations in the “green” gene: unless regulatory mutations

in this gene lead to a complete loss of expression (“broken”), the

opposing gradients network is > 5 times more likely to create a

“flat” phenotype (23.2%) than a “decrease” phenotype (4.1%). In

contrast, the concurrent gradients network does not produce any

“flat” phenotype at all, but readily produces “increase” phenotypes

(4.5%). In sum, mutations in networks which start with the same

phenotype (single “stripe” formation), but which have alternative

topologies and regulatory mechanisms, create different kinds of

novel phenotypes. Hence, phenotypic variation is subject to

constraints, and these constraints differ between regulatory regions

and networks.

Differences in constrained variation can be explained
by differences in the regulatory mechanisms behind
stripe formation

We next asked whether the regulatory mechanisms contributing to

stripe formation can help explain these phenotypic constraints. In

doing so, we focused on novel phenotypes produced by regulatory

mutations in the “green” gene, because such mutations produced

the most distinct spectrum of novel phenotypes (Fig 2D). Also, the

regulation of this gene is most complex, because it receives two

regulatory inputs instead of just one for the other genes (Fig 1).

(Similar analyses for the “red” and “blue” genes can be found in

Appendix Figs S3–S5.)

To address this question, we first used a mathematical model

that we had developed previously and validated experimentally to

describe the regulatory dynamics of our networks (Schaerli et al,

2014). Briefly, the model uses Hill-like functions to represent gene

Box 1. Two starting circuits producing stripes through two
different mechanisms

Opposing gradients mechanism (Incoherent FFM type 2): The “red” gene
[with the open reading frames (ORFs) for LacI and TetR encoded on
the same transcript] is activated by the “morphogen” arabinose (verti-
cal arrow). Its products thus form a gradient of increasing concentra-
tion with increasing arabinose concentration. The “blue” gene (LacI)
and the “green” gene (GFP) are expressed from constitutive promoters.
However, the “blue” gene is also repressed by the “red” gene product
(TetR). Thus, the “blue” gene product forms an opposing gradient with
respect to the gradient of the “red” gene product. Both the “blue”
(LacI) and “red” (LacI) gene products repress the “green” gene. The
GFP thus reaches a high expression only at medium morphogen
concentration where the repression from the “red” and “blue” genes is
low.
Concurring gradients mechanism (Incoherent FFM type 3): The “red”
gene (with the ORFs for SP6 RNA polymerase (RNAP) and LacI
encoded on the same transcript) is activated by the “morphogen”
arabinose, just as in the previous circuit. Its expression thus also
mimics the arabinose gradient. However, in this circuit the “red” gene
product SP6 RNAP activates the “blue” gene, which thus forms a
concurring gradient with respect to the gradient of the “red” gene
product. The “green” gene is activated by the “blue” gene (T7 RNAP)
and repressed by LacI of the “red” gene. Its maximum expression
occurs at medium arabinose concentration where there is already
activation from the “blue” gene, but not yet a high level of repression
of the “red” gene.
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Figure 2. Different networks create different spectra of novel phenotypes after mutation.

A Phenotype categories used in this study. See Materials and Methods for exact definitions. [ara], arabinose concentration. The colours of the axes are used throughout
the paper to colour-code the phenotypes.

B Experimentally observed phenotype distributions when mutating one regulatory region at a time for the opposing (left) and concurring (right) gradients networks.
The pie charts summarise the spectrum of all mutant phenotypes observed in a network. The data are based on 234 and 215 mutants of the opposing and concurring
gradients networks, respectively.

C The GFP expression level (fluorescence normalised by the absorbance) of each individual mutant at medium arabinose concentration is compared to the GFP
expression levels at low (x-axis) and high arabinose (y-axis) concentrations. The numbers written close to each phenotype group are the average mutation rates for
that group. We omitted the “broken” phenotype from this analysis, as the networks with this phenotype do not show any significant GFP expression.

D Experimentally observed phenotype distributions as displayed in (B and C), grouped according to the mutated gene.
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regulation changes based on equilibrium binding of transcription

factors to their DNA binding sites (Bintu et al, 2005; see Table 1,

and Appendix Model Description and Appendix Tables S1 and S2

for details). The unmutated (“wild-type”) model for each circuit

used parameter values determined in our previous study (Schaerli

et al, 2014). Into these models, we now introduced quantitative

changes in the parameters relating to the promoter activity (binding

constants of activators and transcription rates) and to the operator

activity (binding constants of repressors), in order to predict pheno-

types that are accessible by mutations (see Materials and Methods

for details). We represent the unmutated network as a point in

parameter space, and study regions near this point that are accessi-

ble by mutations, and the novel phenotypes they contain (Dichtel-

Danjoy & Felix, 2004). For each parameter we varied, we chose to

examine a uniform distribution in a range between zero and 110%

of the starting/wild-type parameter values, because available muta-

genesis data for the components used in the “green” genes of our

synthetic circuits (Niland et al, 1996; Imburgio et al, 2000; Shin

et al, 2000) suggest that most mutations decrease a parameter value

rather than increasing it.

We visualise the results in phenotype diagrams (Fig 3A and

Appendix Fig S2), which are projections of the higher-dimensional

parameter space onto two dimensions (Jimenez et al, 2015). These

diagrams are built as pixelated images in which for each

combination of parameter values (for each “pixel”) the model

predicts the resulting phenotype and assigns the corresponding

colour (see legend, Fig 3A). In these diagrams, a parameter value of

100% corresponds to the wild-type value and other values in this

region are expressed as a percentage of the wild-type. For example,

the black region in Fig 3 corresponds to mutant parameter combina-

tions that maintain the “stripe” phenotype. Its area is therefore a

measure for a network’s robustness to parameter changes. Overall,

these diagrams provide information on which parameters must be

mutated, and by how much, in order to access a given phenotype.

For each of the novel phenotypes observed experimentally when

mutating the regulatory region of the “green” gene (Fig 2B), some

“mutated” model parameter values exist that reproduce the pheno-

type (Fig 3A). The phenotype diagrams of the two networks

(Fig 3A) are visually very distinct, indicating that the two networks

differ in their potential to access specific phenotypes. Specifically,

for the opposing gradients network we find regions corresponding

to the “broken” (grey), “decrease” (purple), “flat” (yellow) and

“other” (beige) phenotypes, whereas for the concurring gradients

network we find regions for the “broken” and “increase” (orange)

phenotypes—corresponding to the phenotypes observed experimen-

tally when mutating the “green” gene (Fig 2D). Especially instruc-

tive are mutants with strongly decreased repressor binding (i.e.

reduced operator activity, arrows in Fig 3A). Such mutants produce

a “flat” phenotype (yellow region) in the opposing gradient

network, but an “increase” phenotype (orange region) in the

concurring gradient network (Fig 3A). In other words, even though

both networks contain the same operator (LacO) in the “green”

gene, the model predicts that identical operator mutations can lead

to different novel phenotypes. Figure 3B illustrates how this is

possible: if an operator mutation removes the incoming negative

interaction of the “green” gene in the opposing gradient network,

the constitutive promoter becomes the sole driver of “green” gene

expression. Consequently, GFP expression becomes independent of

arabinose concentrations, which results in a “flat” phenotype. In

contrast, after removing the repression of the “green” gene in the

concurring gradient network, the “green” gene is still regulated by

the activating “blue” gene (T7 RNAP) in an arabinose-dependent

manner. Hence, in this mutant circuit, GFP expression increases

with increasing arabinose concentrations. In sum, different biases in

the production of novel phenotypes can be explained by differences

in regulatory mechanisms.

Sequence analysis confirms phenotype diagram predictions of
constrained phenotypic variation

We next validated the predictions made by our phenotype diagrams

with DNA sequence analysis. To this end, we analysed the

sequences of the regulatory regions of the “green” genes we had

mutagenised. Because many mutagenised circuits have multiple

regulatory mutations, we first categorised circuits according to the

number of mutations that they contained, and studied the frequency

of observed phenotypes in each category (Fig 4A, large diagrams:

all mutations). We followed the same procedure for the subsets of

circuits that have mutations only in the promoter sequence or only

in the operator sequence (Fig 4A, smaller diagrams). This categori-

sation reveals that mutations in the operator can produce a “flat”

phenotype in the opposing gradient network, but an “increase”

Table 1. Model (Schaerli et al, 2014) and biological meaning of
parameters for the “green” genes of the opposing and concurring
gradients networks, respectively.

Definition Name Parameter relates to

Opposing gradients

GFP ¼ aþbðc LacIÞn
1þðc LacIÞn

a Basal transcription rates
from the free promoter

b Transcription rate when
LacI is bound

c Binding constant of LacI

n Hill coefficient
(multimerisation or
cooperativity)

Concurring gradients

GFP ¼ aþbðc T7Þnþef ðc T7Þnðd LacIÞm
1þðc T7Þnþðd LacIÞmþf ðc T7Þnðd LacIÞm

a Basal transcription rate in
absence of T7 RNAP

b Transcription rate when
T7 RNAP is bound

c Binding constant of
T7 RNAP

d Binding constant of LacI

e Transcription rate when
T7 RNAP + LacI are bound

f Cooperativity/competition
constant of T7 RNAP/LacI

n Hill coefficient
(multimerisation or
cooperativity)

m Hill coefficient
(multimerisation or
cooperativity)

The complete model for both networks can be found in the Appendix Tables
S1 and S2.
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phenotype in the concurring gradient network (Fig 4A, smaller

diagrams), thus validating model predictions (Fig 3). In addition,

the model predicts that mutations in the operator of the opposing

gradient network are able to produce a “decrease” phenotype

(Fig 3A). Even though we did not find a circuit with a “decrease”

phenotype that has only operator mutations, all circuits with this

phenotype carry at least one mutation in the operator (and addi-

tional mutations in the promoter, Dataset EV1).

Subsequently, we analysed the locations of mutations in

networks with a given phenotype in greater detail (Fig 4B for muta-

tions in the “green” gene, Appendix Fig S5 for mutations in the

other genes). Many networks carry mutations in both the promoter

and the operator. Nevertheless, for the “flat” phenotype of the

concurring gradients network, operator mutations are significantly

enriched [Chi-square goodness-of-fit test, v2 (1, N = 59) = 7.64,

P = 0.006], as predicted by the model (Fig 3). For the “decrease”

phenotype in the opposing gradients network and the “increase”

phenotype in the concurring gradients network, our dataset is too

small to detect the predicted enrichment of operator mutations.

Especially informative are those mutants with a novel phenotype

that carry only a single point mutation (red arrows in Fig 4B).

Among them are two different mutants of the opposing gradient

network with a “flat” phenotype. The mutations in them affect the

two central nucleotides of the Lac operator, which are known to be

critical for operator function (Lehming et al, 1987; Zhang & Gottlieb,

1995; Falcon & Matthews, 2000; Kalodimos et al, 2001). Mutations

in these positions reduce the operator’s binding affinity for the LacI

repressor dramatically (Lehming et al, 1987), and the observed

“flat” phenotype for these mutants supports our phenotype diagram

predictions.

Regulatory mechanisms influence the phenotype distributions
more than the actual parameters of the network

So far, we demonstrated that each of the two analysed networks

yields a biased spectrum of novel phenotypes after introducing

mutations, and that two networks with different regulatory mecha-

nisms yield different spectra of novel phenotypes. However, these

spectra may not be influenced only by a network’s regulatory

mechanisms. They may also differ among networks with the same

topology and the same regulatory mechanism, but with quantita-

tive differences in the biochemical parameters that determine a

networks gene expression pattern. To find out whether this is the

case, we performed the following experiments: we took two

mutant stripe-forming networks of the concurring gradient mecha-

nism with mutations in all three genes (mutants A and B) and
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Figure 3. The same parameter change leads to different phenotypes in the two network types.

A Phenotype diagrams for parameters that describe the activity of the “green” gene. Horizontal and vertical axes indicate promoter and operator activities of the
“green” gene relative to the wild-type value (WT, 100%). All parameters affecting the promoter or operator were varied jointly and to the same extent. Colours
indicate phenotypes predicted by the model over the whole range of promoter and operator activity values. White squares indicate the parameter combination of the
unmutated circuit, which produces the “stripe” phenotype, and white lines are visual guides that project these values onto the two parameter axes. Arrows point to
the phenotype observed when operator activity decreases to a value near zero per cent.

B Schematic drawing of how a strong reduction in operator activity of the “green” gene affects gene expression patterns differently in the two types of networks. Insets:
topologies of the networks, with dashed lines indicating interactions affected by mutations in the operator.

ª 2018 The Authors Molecular Systems Biology 14: e8102 | 2018 7 of 18

Yolanda Schaerli et al Networks constrain evolution Molecular Systems Biology

Published online: September 10, 2018 



introduced further mutations into their “green” regulatory regions.

Figure 5A shows the resulting phenotype distributions and

compares them to the initial (“wild-type”, WT) network. As in the

WT network, we observe “stripe”, “broken” and “increase” pheno-

types in the mutants. However, the figure also shows that the

proportions of these phenotypes differ among the networks. In

addition, 3% (mutant A) and 1.3% (mutant B) of the two concur-

ring gradient network variants displayed a “decrease” phenotype.

This suggests that by making “neutral” or “silent” genetic changes

in a regulatory network that do not affect its (“stripe”) phenotype,

new phenotypes can become accessible through further mutations

(Schuster et al, 1994; Dichtel-Danjoy & Felix, 2004; Wagner,

2011). Nevertheless, the phenotype distributions observed for the

three networks with the concurring gradients mechanism are more

similar to each other than to the one of the opposing gradients

network (Fig 5B). For example, we did not observe any “flat”

phenotype—a phenotype very frequently produced by mutations in

the opposing gradients network. In sum, based on these experi-

ments, the evolution of new phenotypes in our study networks is

more constrained by the regulatory mechanism itself than by the

actual network parameters.

Phenotype distributions can be explained by the model

Encouraged by the agreement between phenotype diagrams and

mutational data, we also aimed to see whether a model of muta-

tional effects can correctly fit the frequencies instead of just the

kinds of phenotypes caused by mutations. To find out, we simulated

the effects of mutations by changing specific parameters of the

model. If a mutation affected a gene’s promoter (or operator), we

changed all the parameters determining promoter (or operator)

activity. Some parameters were changed to the same extent (i.e. we

set the parameters to the same percentage of their wild-type parame-

ter value), because a mutation is likely to affect these specific

parameters in a similar way (Appendix Table S3). We drew the

changed parameters from a uniform distribution, and for each

parameter, we aimed to identify upper and lower bounds for this

distribution that give the best possible agreement between the
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Figure 4. Sequence analysis of the regulatory regions.

A Distribution of observed phenotypes of mutant circuits with mutations in the regulatory region of the “green” gene. Phenotypes are colour-coded (legend). Smaller
graphs to the right indicate the subset of networks that have mutations only in the promoter or only in the operator. The data are based on 73 and 67 mutants of the
opposing and concurring gradients networks, respectively.

B Wild-type sequences of regulatory regions (top of each panel, important elements labelled and coloured) together with the number of mutations at each site of a
regulatory region that produce phenotypes of a given kind (bar-charts below sequence, phenotypes labelled and colour-coded). The height of each bar corresponds to
the number of mutant networks with a mutation at a given position, where these mutations produced the indicated phenotype. Only phenotypes produced by at
least three mutant circuits are shown. Red arrows indicate genotypes that can produce a novel phenotype with a single mutation at the indicated position.
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experimental and model data (Appendix Table S3). Guided by the

phenotype diagrams, we were indeed able to identify such bounds,

which enabled our model to reproduce experimental phenotype

distributions for all three genes well (Table 2), and in particular for

the “blue” and “green” genes where Chi-square tests indicate no

significant difference (P > 0.05) between the experimental and

model phenotype distributions.

For 20 out of 25 parameters, the lower and upper bounds of the

identified intervals were equal or below the WT parameter value

(=100%), consistent with the notion that most random mutations will

disrupt molecular interactions and thus decrease the corresponding

parameter’s value, which is also in agreement with available mutage-

nesis data of the components used in our synthetic circuits (Niland

et al, 1996; Imburgio et al, 2000; Shin et al, 2000). One exception

were the parameter values describing the basal transcription

promoter activity (“leakiness”) of the (pBAD) promoter in the “red”

genes of both networks (opposing gradients: aT, aL, concurring gradi-

ents: aL, aS). These values have upper bounds higher than 100% of

the unmutated (WT) value (Appendix Table S3), which is consistent

with the DNA looping mechanism of the pBAD promoter (Lobell &

Schleif, 1990; see Appendix Discussion of Lower and Upper Bounds

of the Parameter Intervals for details). Another exception was the

basal transcription promoter activity (“leakiness”) of the SP6

promoter in the concurring gradient network (aT). It also has an

upper bound higher than 100% of the unmutated (WT) value

(Appendix Table S3). This was unexpected and led us to discover a

context-dependent effect in the plasmid we used to express the

synthetic circuits (see Appendix Discussion of Lower and Upper

Bounds of the Parameter Intervals for details). In sum, we were able

to reproduce the experimental phenotype distributions with our

model by identifying ranges in which “mutated” parameters fall.

Moreover, these ranges are in agreement with known mutational

effects.

The most significant difference between the phenotype distribu-

tions of the experiments and the model is the fraction of networks

displaying phenotypes in the “other” category, which is consistently

higher in the model predictions than in our experimental data. This

can be explained by the fact that we excluded any network from

further analysis that displayed phenotypes falling into different cate-

gories in at least one of three replicate phenotype measurements

(see Materials and Methods for details). This was often the case for

the “other” phenotype, because it is situated in a narrow range of

the phenotype diagram between two other phenotype categories.

For example, networks show this phenotype if they have lower

expression levels at low and high arabinose concentrations than at

medium arabinose concentration, but neither satisfy our (stringent)

definition of a “stripe”, nor that of any of the other phenotype defi-

nitions (see, e.g., in Fig 3A for opposing gradient network). Small

WT mutant A mutant B

increase
decrease
flat

other
broken

stripe

Opposing gradientsConcurring gradients
WT

BA

Figure 5. Phenotypes are more constrained by the regulatory mechanism itself than by the actual network parameters.

A Mutations were introduced into the “green” genes of three concurring gradients networks with different biochemical parameters. The pie charts display the observed
phenotype distributions. The data are based on 68 (WT, Fig 2D), 67 (mutant A) and 77 (mutant B) variants.

B For comparison, we show again the phenotype distribution of the “green” gene of the opposing gradients network (Fig 2D).

Table 2. Experimentally observed phenotype distributions for the “red”, “blue” and “green” genes can be reproduced by the model.

Opposing gradients Concurring gradients

Red Blue Green Red Blue Green

e m e m e m e m e m e m

Stripe 44.3 48.1 23.5 27.4 31.5 27.6 30.4 14.8 49.3 45.3 56.7 54.1

Increase 45.6 24.1 0.0 0.0 0.0 0.0 64.6 75.9 0.0 0.0 4.5 1.8

Decrease 8.9 11.5 76.5 67.5 4.1 7.2 5.1 2.6 49.3 42.9 0.0 0.0

Flat 1.3 7.5 0.0 0.0 23.3 14.8 0.0 1.7 0.0 0.0 0.0 0.0

Broken 0.0 0.0 0.0 0.0 39.7 44.0 0.0 0.0 0.0 1.1 38.8 43.7

Other 0.0 8.8 0.0 5.1 1.4 6.5 0.0 5.1 1.4 10.7 0.0 0.4

e, Experimentally observed phenotype distributions (in %) when mutating one regulatory region at the time (Fig 2D). m, Phenotype distributions produced by the
model when mutating one regulatory region at a time.
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amounts of variation in replicate phenotype measurements can

therefore lead to different phenotype classifications between repli-

cates (and subsequent exclusion of a network from further analysis)

in our experiments, but not in the model, which does not incorpo-

rate this source of variation.

Non-additive interactions of mutations in multiple regulatory
regions are explained by the regulatory mechanisms of
the networks

Because mutations rarely occur in isolation in a single gene, we next

asked whether mutations in different regulatory regions indepen-

dently affect gene expression phenotypes. To this end, we pooled

networks with mutations in single regulatory regions to obtain

networks with mutations in the regulatory regions of two or three

genes. We then measured the gene expression phenotypes of these

multiple-gene mutants (Dataset EV2) and sequenced their regulatory

regions (Dataset EV1). Figure 6B shows the resulting distribution of

phenotypes. Similar to the one-gene mutants (Fig 2B, repeated in

Fig 6A), some phenotypes occur more frequently than others, and

the opposing and concurring gradient networks produce any one

phenotype at different frequencies.

Regardless of the regulatory mechanism, the frequencies of novel

phenotypes differed significantly between networks with mutations

in multiple versus single genes (Fig 6A and B; opposing: [Chi-

square, v2 (4, N = 36) = 41.7, p < 0.0001]; concurring: [Chi-square,

v2 (4, N = 41) = 167.0, p < 0.0001]). For example, both networks

produce the “flat” phenotype in response to multiple mutations, but

the concurring gradient networks did not produce this phenotype in

response to single-gene mutations (compare yellow sectors in

Fig 6A and B).

Because the phenotypes we observed in the multiple-gene

mutants are not just additive superpositions or “sums” of pheno-

types observed when the mutations occur separately, the mutations

in the different genes must interact non-additively (epistatically) to

produce novel phenotypes, such that a mutation’s phenotypic effect

depends on the genetic background in which it occurs (Lehner,

2011; Mackay, 2014).

In Appendix Fig S6, we show an experimental example of how

mutations in the “green” and “blue” genes can interact to produce a

“flat” phenotype in the opposing gradient network: the network

with the mutated “green” gene maintains the “stripe” phenotype

(Appendix Fig S6A), and the network with the mutated “blue” gene

leads to a “decrease” phenotype (Appendix Fig S6B). When these

two mutations are combined, the resulting phenotype is “flat”

(Appendix Fig S6C). Importantly, this new phenotype cannot just be

explained as an additive superposition of the two individual pheno-

types.

To understand the phenotype distributions of the multiple-gene

mutants, and in particular the non-additive interactions, we turned

again to our model. Analogous to the experiments, we now changed

parameters of multiple genes simultaneously, within the exact same

ranges as used to model single-gene mutants (Appendix Table S3).

The resulting phenotype distributions (Fig 6C, Appendix Table S5)

predict the experimentally observed distributions (Fig 6B) very

well, with a Chi-square test indicating no significant difference

between experiment and prediction (opposing: [Chi-square, v2 (5,

N = 36) = 6.962, P = 0.2235]; concurring: [Chi-square, v2 (5,

N = 41) = 5.552, P = 0.3522]). This implies that both constrained

variation and non-additive interactions of mutational effects are a

direct consequence of how individual network genes interact with

each other.

Discussion

Mutations in regulatory regions of GRNs play a crucial role in evolu-

tionary adaptation and innovation (Prud’homme et al, 2007; Wray,

2007; Payne & Wagner, 2014). Here, we first introduced random

mutations in the regulatory regions of two synthetic stripe-forming

GRNs (Fig 1) and analysed the resulting distributions of novel gene

expression phenotypes (Fig 2). Both networks produced a non-

uniform distribution of novel phenotypes and are thus inconsistent

with a naı̈ve expectation (null model) that each non-stripe pheno-

type is produced at the same frequency. More interestingly, the dif-

ferent networks displayed different phenotypic variation and

consequently different constraints in the production of novel pheno-

types. The identity of the mutated regulatory region and non-additive

interactions among mutations in multiple regions also influenced

these constraints.

A mathematical model describing the regulatory mechanisms of

the two networks allowed us to understand the differences between

accessible novel phenotypes for the two networks (Figs 2 and 3).

The model predictions are also supported by DNA sequencing data

(Fig 4). We thus provide for the first time empirical evidence that

GRNs with different regulatory mechanisms can cause different

constrained variation, as was recently proposed (Jimenez et al,

2015). We also provide experimental evidence that the mechanism

by which a network produces a stripe constrains the origin of novel

expression phenotypes more than quantitative parameters driving

gene expression dynamics (Fig 5).

Comparisons of GRNs in related species indicate that they

indeed solve the problem of producing a specific adaptive pheno-

type in many different ways, and that these solutions diverge

substantially on evolutionary time scales, even when the ultimate

phenotype stays qualitatively the same (Savageau, 1983; Weiss &

Fullerton, 2000; True & Haag, 2001; Dalal & Johnson, 2017;

Johnson, 2017). Examples include the GRN that regulates mating

in yeast: even though both Saccharomyces cerevisiae and Candida

albicans produce two mating types (a-cells and a-cells), the circuit

responsible for determining these mating types has changed

substantially during evolution (Tsong et al, 2006; Sorrells et al,

2015). Why a specific GRN and not one of its alternatives evolves

remains an open and important question (Carroll, 2008). In an

attempt to understand the pertinent principles of GRN evolution,

Savageau formulated its “demand rule” (Savageau, 1977). He

observed that activators and repressors can achieve the same regu-

latory goals, but that frequently expressed genes tend to be regu-

lated by activators (positive mode of regulation), whereas rarely

expressed genes tend to be regulated by repressors (negative

mode). These differences can be explained by the fact that nega-

tive and positive regulatory modes can lead to different pheno-

types and to different deleterious consequences upon mutation

that favour one or the other mode of regulation (Savageau, 1977,

1983, 1998a,b). While Savageau’s work focuses on maintaining the

initial regulation, our observations show that seemingly equivalent
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solutions to solve a biological problem also differ in the qualita-

tively novel phenotypes (which might be adaptive) that they can

access through mutation.

While evolutionary constraints are an important concept in

evolutionary theory (Smith et al, 1985; Arnold, 1992), few experi-

mental studies have aimed to detect or quantify them (Teotonio &

Rose, 2000; Beldade et al, 2002; Frankino et al, 2005; Allen et al,

2008; de Vos et al, 2013, 2015; Bolstad et al, 2015; Lagator et al,

2016, 2017a; Zalts & Yanai, 2017). These studies emphasise the

importance of natural selection in determining the outcome of

adaptive evolution (Beldade et al, 2002; Frankino et al, 2005), but

they also show that evolution of development can be biased by

the constrained production of phenotypes (Kiontke et al, 2007;

Allen et al, 2008; Bolstad et al, 2015). Laboratory selection experi-

ments have proven to be a powerful tool for detecting evolution-

ary constraints (Kiontke et al, 2007; Allen et al, 2008; Bolstad

et al, 2015), for example in the colour pattern of butterfly wing

spots (Allen et al, 2008). However, they have been less successful

in disentangling their genetic and developmental causes (Arnold,

1992; Wagner, 2011). This is not surprising, because studying the

evolution of developmental GRNs in a multicellular organism is

extremely difficult: GRNs are complex, highly interconnected,

often incompletely understood, and their genes may be highly

pleiotropic, serving multiple functions outside any one GRN

(Stearns, 2010). In addition, essential molecular tools for manipu-

lating GRNs are often unavailable, especially in non-model

organisms.

Experimental studies on proteins (Miller et al, 2006; Harms &

Thornton, 2013) and cis-regulatory elements (de Vos et al, 2013,

2015; Lagator et al, 2016, 2017a) with simple phenotypes have

demonstrated how structure–function relationships of macro-

molecules can constrain evolution. Here, we extended this approach

to nonlinear GRNs by studying synthetic circuits in E. coli (Fig 1).

We performed experiments with easily modifiable, well-charac-

terised synthetic circuits that are not essential for the survival of

their host organism. However, the chosen phenotype—stripe forma-

tion in a chemical gradient—is crucial for embryonic development

of many organisms and body structures (Stanojevic et al, 1991;

Wolpert, 1996; Lander, 2007; Rogers & Schier, 2011; Sagner &

Briscoe, 2017). For example, an opposing gradients network is part

of the gap network responsible for axial patterning in the Drosophila

embryo (Jaeger, 2011). And while a lawn of E. coli cells carrying a

synthetic GRN does not capture the complexity of a developing

animal, this reduced complexity also allowed us to study the poten-

tial of GRNs to bias phenotype production without confounding

effects. In addition, while metazoans development relies on complex

gene regulatory networks, many of the underlying network motifs

(Alon, 2007) are similar or identical to those studied here. Minimal

network motifs embedded in larger networks are necessary and suf-

ficient for many network functions, but adding extra connections

often adds control, precision and robustness, and may impose its

own evolutionary constraints. That said, our work shows that

evolutionary constraints already emerge from simple network

motifs.
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Figure 6. Mutations in multiple regulatory regions interact non-additively.

A Experimentally observed phenotype distributions when mutating one regulatory region at a time for the opposing (top) and concurring (bottom) gradients networks.
Data redisplayed from Fig 2B to facilitate comparison with Fig 6B.

B Experimentally observed phenotypes of networks with at least two mutated regulatory regions. The data are based on 36 and 41 mutant networks for the opposing
(top) and concurring (bottom) gradients mechanisms, respectively.

C Phenotype distributions produced by the model when simultaneously mutating multiple regulatory regions.
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Recent developmental and quantitative genetics studies demon-

strated that epistatic interactions among genes are of paramount

importance in determining phenotypes (Haag, 2007; Lehner, 2011;

Mackay, 2014; Lagator et al, 2017a). For example, experiments in

D. melanogaster have shown that the phenotypic effects of variation

in single genes depend heavily on the genetic background, and they

do so for phenotypes as varied as bristle shape and number, haltere

and eye size, and wing morphology (reviewed in Lehner, 2011;

Mackay, 2014). Nonlinear regulatory mechanisms of gene regulation

such as those we study are one possible cause of epistatic interac-

tions (Lehner, 2011). To our knowledge, our study shows for the

first time that non-additive interactions in a nonlinear gene regula-

tory network help produce constrained phenotypic variation. These

interactions enabled the origin of novel phenotypes that were not

observed when we mutated a single gene (e.g. the “flat” phenotype

in concurring gradients network, Appendix Fig S6). Our results

suggest that these epistatic interactions can also be predicted if the

corresponding GRN, its regulatory mechanism and the effect of

mutations in single regulatory regions are known. This observation

complements a recent study suggesting that epistatic interactions

between mutations in transcription factors and DNA binding sites

are determined by regulatory network structure (Lagator et al,

2017b). Ultimately, understanding the nonlinearities inherent in

complex biological systems will be essential to understand how

such systems constrain the production of phenotypes.

Since the 19th century, Darwinian evolutionary biology has

focused on natural selection and its power to shape populations and

species. Natural selection, however, requires phenotypic variation,

and the molecular mechanisms by which DNA mutations produce

novel phenotypes have only become understood in recent years.

While orthodox evolutionary theory assumed, often tacitly, that

DNA mutations may produce any kind of variation (Mayr, 1963),

the discovery of constrained phenotypic variation challenged this

view (Smith et al, 1985; Arnold, 1992). As we show here,

constrained variation in simple yet important spatial gene expres-

sion patterns can be explained by the simple fact that genes are

embedded in regulatory networks. What is more, the regulatory

mechanisms of these GRNs can help explain why specific gene

expression patterns originate preferentially. Given the pervasive

nonlinearity of gene regulatory networks (Davidson, 2006), we

surmise that constraints like those we observe are inherent in

biological pattern-forming systems. Future work will show whether

they can also influence the trajectories of adaptive evolution.

Materials and Methods

Media

Cloning experiments used Luria–Bertani medium (LB: 10 g Bacto-

tryptone, 5 g yeast extract, 10 g NaCl per 1 l) supplemented with

appropriate antibiotic (100 lg/ml ampicillin, 30 lg/ml kanamycin

or 50 lg/ml spectinomycin). Experiments with the complete

synthetic circuits used “Stripe Medium” [SM: LB plus 0.4% (w/v)

glucose, 50 lg/ml ampicillin, 15 lg/ml kanamycin and 25 lg/ml

spectinomycin]. For the opposing gradients network, SM was

supplemented with 5 lM isopropyl b-D-1-thiogalactopyranoside
(IPTG).

Molecular cloning reagents

Restriction enzymes and T4 DNA ligase were purchased from New

England BioLabs (NEB). Oligonucleotides were obtained from

Microsynth and chemicals were obtained from Sigma-Aldrich. Poly-

merase chain reactions (PCRs) were carried out with KOD Hot Start

polymerase (MERCK MILLIPORE). Plasmids were purified using the

QIAprep Spin Miniprep Kit (QIAGEN).

Generation of libraries

Two stripe-forming synthetic circuits of our previous work (Schaerli

et al, 2014) which implemented the opposing gradients mechanism

(GenBank accession codes of plasmids: KM229377, KM229382,

KM229387) and the concurring gradients mechanism (GenBank

accession codes of plasmids: KM229378, KM229383, KM229388)

were used as starting points (“wild-types”, WT) of our

experiments.

Mutating one regulatory region of a circuit at a time

Oligonucleotides covering the regulatory regions of these circuits

were synthesised with weighted base mixtures (Isalan, 2006). That

is, four custom-weighted phosphoramidite mixtures were prepared,

with the WT base pair constituting 95% and each of the other

bases constituting 1.67% of any one mixture. These mixtures were

used to randomise the regulatory regions (Table 3) during oligonu-

cleotide synthesis (Microsynth). These semi-randomised weighted

single-stranded oligonucleotides (2 lM) were annealed to a reverse

Table 3. Sequences of oligonucleotides synthesised with weighted
base mixtures.

Network+ gene
Weighted oligonucleotide for
randomisation (50?30)

OG red CGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAG
ATTAGCGGTTCCTACCTGACGCTTTTTATCGCAACTCTCT
ACTGTTTCTCCATACCGAATTCATTTCACC

OG blue ATTGGAATTCTTTATGGCTAGCTCAGTCCTAGGTACAATG
CTAGCGAAGGGTCCCTATCAGTGATAGAGAGAGCTCGTT
GAGTTACCTGC

OG green ATTGGAATTCTTGACGGCTAGCTCAGTCCTAGGTACAGTG
CTAGCGAAGGGAATTGTTATCCGGATAACAATTCCGAGCT
CGTTGAGTTACCTGC

CG red CGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATT
AGCGGTTCCTACCTGACGCTTTTTATCGCAACTCTCTACTG
TTTCTCCATACCGAATTCATTTCACC

CG blue ATTGGAATTCATTTTGGTGACACTATAGAAGGGGCCAAG
CAGGGGGCCAAGCAGGGGGCCAAGGAGCTCGTTGAGTT
ACCTGC

CG green ATTGGAATTCTAATACGACTCACTGTAGGGGAATTGTTA
TCCGGATAACAATTCCGAGCTCGTTGAGTTACCTGC

CG green
mutant A

ATTGGAATTCTAATACGACTCACTGTAGGGGAATTGTTA
ACCGGATAACAATTCCGAGCTCGTTGAGTTACCTGC

CG green
mutant B

ATTGGAATTCTTAATACGACTCACTGTAGGTGAATTGTT
ATCCGGATAACATTCCGAGCTCGTTGAGTTACCTGC

The underlined region was randomised, and the remaining sequence was
constant.
OG, opposing gradient network; CG, concurring gradient network.
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primer (Table 4, 2.4 lM) to render them double-stranded by

primer extension (2 min 95°C, cooling down to 72°C in 7 min,

10 min 72°C). The resulting library of double-stranded oligonu-

cleotides was then purified with the QIAquick nucleotide removal

kit (QIAGEN). Next, these double-stranded oligonucleotides encod-

ing the mutated regulatory regions were cloned into the plasmid

encoding the gene whose regulatory region was to be mutated. For

the “blue” and “green” regulatory regions, this was done by

restriction enzyme digest and ligation. For the “red” regulatory

region, Gibson assembly (Gibson et al, 2009) was performed

instead.

The cloning of the “blue” and “green” regulatory regions by

restriction enzyme digest and ligation was performed as follows:

double-stranded oligonucleotides encoding one of the regions

were digested with EcoRI and SacI. The plasmid into which the

region was to be inserted was also digested with EcoRI and

SacI, dephosphorylated with CIP and gel purified (QIAquick gel

extraction kit, QIAGEN). The double-stranded digested oligonu-

cleotide library (25 ng) was then ligated into the cut plasmid

(70 ng).

The cloning of the “red” regulatory regions by Gibson assembly

was performed as follows: the plasmid into which the region was to

be inserted was first amplified using the primers pBAD_Gibson_f

and pBAD_Gibson_r (Table 4), and was then assembled with the

double-stranded oligonucleotide library using the Gibson assembly

master mix (NEB). Due to a mistake in primer design, Gibson

assembly produced a two-nucleotide deletion (CT) downstream of

the pBAD promoter. Therefore, the library contains sequences with

and without this deletion. We confirmed that this change did not

affect the initial “stripe” phenotype.

Ligation (“blue” and “green” regulatory regions) and Gibson

assembly reaction products (“red” regulatory region) were trans-

formed into electrocompetent MK01 cells (Kogenaru & Tans, 2014)

that carried already the two other plasmids necessary to complete

the synthetic circuit. Transformants were plated out on SM-agar

plates.

Mutating multiple regulatory regions of a circuit

For experiments where multiple regulatory regions of a circuit

were to be mutated at the same time, cloning was performed as

described above for mutating one regulatory region at a time.

However, instead of transforming plasmids with mutagenised

regulatory regions directly into MK01 cells, ligation products and

Gibson assembly reaction products were first transformed into

electrocompetent NEBa cells, and plated out on LB-agar plates

containing the appropriate antibiotic (100 lg/ml ampicillin,

30 lg/ml kanamycin or 50 lg/ml spectinomycin). All colonies

were resuspended in LB, diluted 100-fold into LB containing the

appropriate antibiotic, and grown overnight. Plasmids libraries

were extracted from the resulting culture (QIAprep Spin Miniprep

Kit, QIAGEN). The extracted plasmid libraries were mixed with

plasmids containing no mutations in a ratio of 70:30 to generate

mutant circuits that have mutations in two or three genes. The

resulting plasmid mix was transformed into electrocompetent

MK01 cells (Kogenaru & Tans, 2014). Circuits that had no muta-

tions or only mutations in one gene were not considered in the

analysis.

Fluorescence measurements of mutagenised circuits

The agar plates in Fig 1 are only shown to illustrate the spatial

pattern formation. The quantitative measurements were all

performed in liquid cultures in 384-well plates:

Colonies were picked from agar plates, inoculated into SM

medium in a single well of a 96-well plate and grown overnight.

Each plate also contained three clones of the WT circuit and a

“blank” (SM medium only). A glycerol stock plate was prepared

from the overnight cultures. This plate was used to inoculate three

further 96-well overnight pre-culture plates with SM medium. Five

microliter of each well from the 96-well plate was transferred to four

wells of a 384-well plate containing 55 ll of SM medium, arabinose,

and IPTG. Specifically, the four wells contained the following

amounts of arabinose and IPTG:

1 0% arabinose (“low”)

2 0.0002% arabinose (“medium”)

3 0.2% arabinose (“high”)

4 0.2% arabinose with 700 lM IPTG for the opposing gradients

network and 0.2% arabinose with 100 lM IPTG for the concur-

ring gradients network (“metabolic load control”, see section

“Phenotype classification, metabolic load” for details).

The pipetting steps for this part of the experiment were carried

out with a manual pipetting system (Rainin Liquidator 96,

METTLER TOLEDO).

The 384-well plate was incubated at 37°C in a Tecan plate

reader (Infinite F200 Pro or SPARK 10 M) until the E. coli cells

had reached stationary phase (~5 h). During this incubation,

absorbance at 600 nm and green fluorescence (excitation: 485 nm,

emission: 520 nm) were measured every 10 min. Between read-

ings, plates were shaken continually (orbital, 2 mm). Plates were

incubated and read with their lids in place to reduce evaporation.

Absorbance and green fluorescence were measured for each

colony in three independent experiments, each started from a

separate pre-culture plate.

Analysis

The time-point when the fluorescence of the WT network at the

medium arabinose concentration (0.0002%) peaked was chosen

for further analysis of all fluorescence measurements. The back-

ground fluorescence of the SM medium was subtracted from each

culture’s fluorescence. Likewise, the background absorbance was

subtracted from each culture’s absorbance. Background-corrected

fluorescence was then normalised for the number of cells by

dividing it by the background-corrected absorbance. This back-

ground-corrected normalised fluorescence (nF) was used for all

further analyses.

All expression data are listed in the file Dataset EV2.

Table 4. Sequences of primers used for cloning.

Name Sequence (50?30)

rev_green/blue GCAGGTAACTCAACGAGCTC

rev_red GGTGAAATGAATTCGGTATGGA

pBAD_Gibson_f TCCATACCGAATTCATTTCACC

pBAD_Gibson_r AGTGTGACGCCGTGCAAATAATC

ª 2018 The Authors Molecular Systems Biology 14: e8102 | 2018 13 of 18

Yolanda Schaerli et al Networks constrain evolution Molecular Systems Biology

Published online: September 10, 2018 



Exclusions

A circuit was excluded from further analysis if:

1 any of its nF values (except the one at 0% arabinose) was

smaller than zero or

2 the absorbance of the circuit differed by more than 0.1 from the

absorbance of the WT controls in any of the four conditions (which

indicates a substantially different growth rate of the circuit) or

3 it suffered from metabolic load (see below).

Metabolic load

The 4th condition (highest arabinose concentration with IPTG) served

as a metabolic load control. We previously noted that expressing the

genes of synthetic networks at high levels can induce a strong bacte-

rial stress response that affects the expression of genes and the growth

rate of the cell (Schaerli et al, 2014). This can lead to a spurious

“stripe” phenotype caused by a stress-induced GFP expression that is

shut down at the highest arabinose concentration (Schaerli et al,

2014). We therefore checked for each circuit whether it suffers from

this metabolic load problem. To this end, we removed LacI repression

at the highest of our three arabinose conditions through addition of

IPTG. Without repression, we are no longer expecting to observe a

“stripe” phenotype. If the observed phenotype is nevertheless a

“stripe”, this is a strong indication that the network suffers from meta-

bolic load. Specifically, a circuit was excluded due to high metabolic

load if its nF value in the 4th condition was lower than 90% of its nF

value at the medium arabinose concentration, and if the nF value at

the medium arabinose concentration was higher than the correspond-

ing nF of the WT controls [we know that expression levels as high as

that of the WT do not induce metabolic load (Schaerli et al, 2014)].

Phenotypic categories

All mutant circuits that remained after the filtering procedure just

described were classified into the following phenotypic categories

(in this order):

Broken

A threshold value of nF below which a phenotype was considered

“broken” was defined as follows: For the opposing gradients

networks, nF needed to lie below the nF of the WT controls at the

highest of our three arabinose concentrations. For the concurring

gradients networks, nF needed to lie below 1/3 of the nF of the

WT controls at this highest arabinose concentration. Any circuit

whose nF was below this threshold in all four conditions was

assigned the “broken” phenotype. The reason for the different defi-

nitions of the threshold for the two networks is that the WT

concurring gradient network circuit has a much higher level of

basal fluorescence.

Flat

The average nF of the lowest, medium and highest arabinose concen-

tration was calculated. If all three nFs differed by less than 10% from

this average, the circuit was assigned the “flat” phenotype.

Decrease

If the following three statements were true, the mutant circuit was

assigned the “decrease” phenotype:

1 The nF at the lowest arabinose concentration was higher than

90% of the nF at the medium arabinose concentration.

2 The nF at the medium arabinose concentration was higher than

90% of the nF at the highest arabinose concentration.

3 The nF at the lowest arabinose concentration was higher than

120% of the nF at the highest arabinose concentration.

Increase

If the following three statements were true, the mutant was assigned

the “increase” phenotype:

1 The nF at the highest arabinose concentration was higher than

90% of the nF at the medium arabinose concentration.

2 The nF at the medium arabinose concentration was higher than

90% of the nF at the lowest arabinose concentration.

3 The nF at the highest arabinose concentration was higher than

120% of the nF at the lowest arabinose concentration.

Stripe

If the nF at medium arabinose concentration was higher than 120%

of the nF at the lowest and highest arabinose concentrations, the

mutant was assigned the “stripe” phenotype.

Other

Any phenotype that did not fall into one of the previous categories.

Sequencing

The mutagenised region(s) of all circuits whose phenotype fell into

one of our six main categories, and did so consistently in three inde-

pendent measurements were sent for Sanger sequencing (High-

throughput service, Microsynth, see Table 5 for primers).

Mutagenised circuits with WT regulatory sequences despite muta-

genesis, with polymorphic nucleotides in the sequences (mainly due

to transformation of multiple plasmid variants into the same cell) or

with cloning artefacts (shortened or multiple regulatory regions),

were discarded. The remaining mutants were used for the phenotypic

statistics we report, and their sequences were analysed further. Pair-

wise alignment to the WT sequence was performed with the Biopy-

thon (Cock et al, 2009) Bio.pairwise2 module. A custom-made

Python script was used to categorise mutations as point mutations,

insertions, or deletions, and to identify their positions.

All sequences are listed in Dataset EV1.

Experimental confirmation of rare observed phenotypes

Phenotypes observed fewer than three times in a library (except

“others”) were experimentally confirmed. The fluorescence output

Table 5. Sequences of primers used for sequencing.

Name Sequence (50?30) Used to sequence

pET_Seq CCGAAAAGTGCCACCTGAC OG green

pET_Seq_Amp GACACGGAAATGTTGAATACTCATAC CG green, OG green

pBAD_f GCCGTCACTGCGTCTTTTAC OG red, CG red

pCDF_Seq_ori GAGTTCGCAGAGGATTTGTTTAGC OG blue, CG blue

pCDF_I2_rev TCTACTGAACCGCTCTAG OG blue
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of these circuits was measured in a 96-well plate assay as described

previously (Schaerli et al, 2014) at the arabinose concentrations also

used in the 384-well plate assay. If the phenotypes of the two assays

did not agree, the circuits were excluded from the dataset.

Experimental confirmation of epistasis

The plasmids from mutant 4_4_f (see Dataset EV1) were isolated

(Appendix Fig S6). For Appendix Fig S6A, the mutated plasmid

coding for the “green” gene was transformed together with the WT

plasmids for the “blue” and “red” genes into electrocompetent MK01

cells (Kogenaru & Tans, 2014). For Appendix Fig S6B, the mutated

plasmid coding for the “blue” gene was transformed together with

the WT plasmids for the “green” and “red” genes into electrocompe-

tent MK01 cells (Kogenaru & Tans, 2014). For Appendix Fig S6C, the

initial 4_4_f mutant was assayed (the “red” gene is not mutated). The

fluorescent phenotypes were measured in a 96-well plate assay as

described (Schaerli et al, 2014) at the following arabinose concentra-

tions (w/v): 0.2, 0.02, 0.002, 0.0002, 0.00002, 0%.

Statistical tests

Chi-square goodness-of-fit tests (Snedecor & Cochran, 1989) were

used to compare observed and expected frequencies. An online tool

(https://graphpad.com/quickcalcs/chisquared1.cfm) was used to

perform the calculations.

Phenotype diagrams

A previously developed and experimentally validated model was used

to describe the regulatory dynamics of our networks (see

Appendix Tables S1 and S2 for details) (Schaerli et al, 2014). To

generate phenotype diagrams, a custom-made Python script (Code

EV2) was written that systematically varies the combinations of two

or more parameters between 0–110% (for the “blue” and “green”

genes) or 0–200% (for the “red” genes) of the wild-type parameter

value in 1,000 steps. Analogously to our experiments for each parame-

ter combination, the model’s phenotype was evaluated at three arabi-

nose concentrations (0, 0.000195, 0.2% for opposing gradients

network and 0, 0.000195, 0.1% for concurring gradients network). In

order to allocate the obtained GFP expression pattern to a phenotype

category, the same rules as described above for the experimental data

(“Phenotypic categories”) were used. An R script (R Development

Core Team, 2016; Code EV2) was applied to create a digital image

where every pixel corresponds to a combination of parameter values

and has a colour corresponding to the model’s phenotype. For

Appendix Fig S3, combinations of two parameters as indicated on the

axes were varied. For Fig 3A, multiple parameters affecting the

promoter or operator were varied jointly and to the same extent. For

the opposing gradients network, these were parameters a and b for

promoter activity, and parameter c for operator activity. For the

concurring gradients network, these were parameters b, c and e for

promoter activity and parameter d for operator activity.

Distributions of novel phenotypes

In order to fit quantitatively the distributions of novel phenotypes

for the single-gene mutants and predict the distributions of novel

phenotypes for the multiple-gene mutants, a custom-made Python

script (Code EV3) was used. We first discuss the single-gene

mutants:

Multiple iterations of a procedure were performed that consisted

of the following three steps: first, a series of simulated mutants was

created. For each gene, a random binary vector whose length corre-

sponds to the number of nucleotides in the regulatory sequence

(Appendix Table S4) was generated. In this binary vector, 0’s and

1’s indicate whether a nucleotide is not mutated (0) or mutated (1),

and the probability to obtain either 0 or 1 is given by the average

mutation rate extracted from the experimental sequencing data

(Appendix Table S4). For every network, it was then assessed which

genes were mutated, according to the entries of this vector. For the

single-gene mutants, mutants that had only one gene mutated were

selected. This process was repeated until 1,000 single-gene mutants

had been obtained. For a particular mutant, all parameters related

to the mutated sequence were varied (see Appendix Tables S1–S3).

A given single-gene mutant had either only its promoter mutated,

only its operator mutated, or both. If a mutation affected the

promoter (operator), all parameters determining promoter (opera-

tor) activity were changed (Appendix Table S3). A subset of the

changed parameters was varied jointly and to the same extent (i.e.

all of them were changed to same percentage of their wild-type

parameter value), because a mutation is likely to affect these param-

eters in a similar way (Appendix Table S3). New (mutant) parame-

ters were chosen according to a standard uniform distribution

between upper and lower ranges which were kept constant for a

given model iteration.

Second, for each mutant the phenotype of the model

(Appendix Tables S1 and S2) was evaluated at three arabinose

concentrations (0, 0.000195, 0.2 for opposing gradients network and

0, 0.000195, 0.1 for concurring gradients network). In order to allo-

cate the resulting GFP expression pattern to a phenotype category,

the same rules as described above for the experimental data

(“Phenotypic categories”) were used.

Third, the obtained phenotype distribution of the 1,000 assessed

mutants was compared to the experimentally observed phenotype

distribution.

After each iteration of these three steps, the upper and lower

ranges of each parameter were manually adjusted to best fit the

results of the model to the phenotype distributions observed in the

experimental data (see Appendix Discussion of Lower and Upper

Bounds of the Parameter Intervals). Finally, the best upper and

lower ranges for each mutant parameter distribution were kept

(Appendix Table S3) and used to produce Fig 2C.

To predict the distributions of novel phenotypes for the multiple-

gene mutants (Fig 2E), the same procedure was used, with the follow-

ing modifications: (i) only mutants containing more than one mutated

gene were kept for analysis. (ii) The upper and lower ranges of the

parameter distributions were not adjusted, but the intervals derived

from the single-gene mutants were used (Appendix Table S3). (iii)

Only one iteration of the three steps above was performed.

Schematic drawings

Figure 3B contains schematic depictions, based on the mathematical

steady-state model. The model uses the parameters as in

Appendix Tables S1 and S2 with following changes:
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Figure 3B: opposing gradient (left): Parameter c of the “green”

gene was changed from 0.103 to 0; concurring gradient (right):

Parameter c of the “green” gene was changed from 16.5 to 0.

Data availability

The plasmids of the starting networks (Schaerli et al, 2014) are

available on the GenBank (https://www.ncbi.nlm.nih.gov/genba

nk/) with following access codes: KM229377, KM229382,

KM229387 (opposing gradients network) and KM229378,

KM229383, KM229388 (concurring gradients network). Sequences

of the regulatory regions of all the mutants reported in this study

are in Dataset EV1. Measured expression levels of all the mutants

reported in this study are in are in Dataset EV2. Scripts used to

generate the expression dynamics, the phenotype diagrams and the

distribution of phenotypes are provided as Codes EV1, EV2 and

EV3, respectively.

Expanded View for this article is available online.
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