


















reached response amplitudes between 80 and 100%, similar to IEGs.

However, upon two-hour pulse signalling, the majority of ILGs

reached response amplitudes only between 40 and 60%, and upon

transient EGF-mediated signalling, the majority of ILGs did not

exceed 20% response amplitude. Thus, ILGs clearly distinguished

sustained and short signalling by translating signal duration into

response amplitude. Supporting our hypothesis that long mRNA

half-lives enable this decoding mechanism, we found that a fraction

of long-lived DEGs with model-derived half-lives greater 120 min

was also capable of decoding ERK signal duration in a similar

manner (ARL5B, BHLHE40, C2orf42, CDKN1A, GADD45A, GPR50,

HOMER1, KDM6B, KRT8, PPP1R15A, SERPINB9, TFPI2, TNFRSF12A,

TXNL4B).

Next, we investigated in detail the relation between signal dura-

tion and response amplitude in a qRT–PCR expression panel consist-

ing of seventeen highly regulated IEGs, ILGs and long-lived DEGs

(Fig EV6A). Using our synthetic system, we activated ERK signalling

for five different durations ranging from half an hour to eight hours,

and measured the time kinetics of these seventeen genes (cf.

Fig EV1C for sampling). The resulting time series shows that IEGs

like EGR1 and FOS relay signal duration to response duration, that is

longer pulses lead to longer expression with the same amplitude

(Fig 6C). ILGs like CLU and FOSL1 on the contrary decode signal

duration by translating it into response amplitude, that is maximal

expression increased with longer signal duration. The principle was

not only apparent when looking at individual genes, but also in the

average response amplitude for all qRT–PCR-validated genes

(Fig 6D). For IEGs, the median amplitude of IEGs increases only

slightly from 0.5 to 1 h and remains at 100% for longer durations.

In contrast, the median amplitude of ILGs increases steadily with

higher signal duration. Taken together, these data confirm that IEGs

relay signal duration, whereas ILGs decode signal duration into

response amplitude.

We were also interested if such decoding is also apparent at

the protein level and tested the proteins EGR1, FOS, CLU and

FOSL1 (Fig 6E). For EGR1, we find that also the protein relays

signal duration but does not decode it. FOS protein levels, in

contrast, did show strong duration decoding. This is in accor-

dance with the literature (Murphy et al, 2002, 2004), as the FOS

protein is stabilised in an ERK-dependent fashion. Therefore,

IEGs can decode signal duration on the protein level if the

protein itself is stable or stabilised (Fig 6E). For both tested ILGs

CLU and FOSL1, we find that also their proteins show strong

differences in response amplitude for the different input stimuli,

and can therefore decode signal duration.

ILG decoding of ERK signal duration is conserved in PC12
and MCF7

So far, our analyses were focussed on a synthetic cell culture system

that allows for precise control of ERK signal duration. To provide

evidence that the principle of how ILGs decode signal duration is

conserved in more physiological conditions, we examined two other

paradigm model systems for ERK signal duration. As elaborated

above, PC12 cells undergo proliferation or differentiation when

exposed to transient or sustained ERK signalling elicited by EGF or

neuronal growth factor (NGF), respectively. Likewise, MCF7 cells

undergo proliferation or commit to apoptosis when exposed to

transient or sustained ERK signalling elicited by EGF or heregulin

(HRG), respectively. We calculated amplitude ratios for significantly

induced IEGs and ILGs in MCF7 and for homologues in PC12 using

publicly available data sets (Shiraishi et al, 2010; Offermann et al,

2016). Both NGF/EGF amplitude ratio in PC12 and HRG/EGF ampli-

tude ratio in MCF7 were higher for ILGs when compared to IEGs.

To further provide evidence that mRNA half-lives dominate gene

expression timing and hence translation of signal duration into

response amplitude, we compared genes induced in both 4OHT-

treated HEK293ΔRAF1:ER and PC12 or MCF7 cells, respectively.

Whereas maximum log2 fold changes showed poor correlation, both

our model-derived response times and median mRNA half-life esti-

mates correlated nicely with peak expression time points in both

PC12 and MCF7 (Spearman’s rho between 0.60 and 0.70, Fig EV6C

and D). This suggested that gene expression timing is highly

conserved in all three tested models for ERK signal duration.

ILGs might serve as a fail-safe mechanism to control aberrant
ERK signalling in HEK293

Previous studies have suggested that IEGs and DEGs are distinct in

function and that they can regulate each other. Whereas IEGs have

been described as feed-forward elements predominantly encoding

transcription factors (boosting the expression of DEGs and inducing

the expression of SRGs), DEGs have been described as a module of

negative feedback regulators (Amit et al, 2007; Tullai et al, 2007;

Kholodenko et al, 2010; Avraham & Yarden, 2011). These negative

feedback regulators include phosphatases (DUSPs), which inactivate

MAP kinases (Fritsche-Guenther et al, 2011); RNA binding proteins,

which mediate degradation of IEGs (e.g. ZFP36, which binds FOS

mRNA); and other negative feedback elements, such as tumour

suppressors (Amit et al, 2007).

To check whether our classification of different PRG subclasses

is consistent with known functional annotations, we performed

Gene Ontology (GO) term enrichment analysis (Fig EV7A). In accor-

dance with the literature, IEGs were enriched for positive regulators

of transcription from PolII promoter (9 out of 21: CYR61, EGR1,

EGR2, ETV5, FOS, FOSB, INSIG1, JUNB, RBM14). Among induced

DEGs, we identified aforementioned RNA binder ZFP36, negative

receptor feedback elements ERRFI1 and SPRY2, and other negative

feedback regulators of protein kinase activity (GADD45A,

GADD45B, CDKN1A, TNFAIP3). Moreover, the top upregulated DEG

was tumour suppressor tissue factor pathway inhibitor 2 (TFPI2).

Having confirmed the different functional roles of IEGs and

DEGs, we moved on to functionally characterise our newly defined

gene cluster of ILGs. Strikingly, GO term enrichment analysis

suggested a distinct role of ILGs in positive regulation of apoptosis,

putatively opposing involvement of IEGs in negative regulation of

apoptosis. This finding suggests that the capability of ILGs to decode

ERK signal duration might serve as a potential fail-safe mechanism

to control aberrant ERK signalling, as these positive regulators of

apoptosis only come into play, when ERK is activated in a prolonged

fashion.

In general, it has been shown that RAF-MEK-ERK signalling is

involved in positive and negative regulation of both intrinsic (mito-

chondrial) and extrinsic (receptor) pathway of apoptosis (Thiel

et al, 2009; Cagnol & Chambard, 2010). Induction of mitochondrial

apoptosis pathway involves Caspase-9 activation, whereas extrinsic

Molecular Systems Biology 13: 928 | 2017 ª 2017 The Authors

Molecular Systems Biology Immediate–late genes decode ERK signal duration Florian Uhlitz et al

10

Published online: May 3, 2017 



apoptosis pathway is triggered by tumour necrosis factors (e.g.

TNF-a or FasL) binding to death domain receptors, in turn causing

subsequent activation of Caspase-8 (Fulda & Debatin, 2006). Inter-

estingly, both anti-apoptotic effects of RAF-MEK-ERK signalling

(Erhardt et al, 1999; Lehmann et al, 2000; Schulze et al, 2001; Thiel

et al, 2009), and pro-apoptotic effects (Wang et al, 2000; Zhuang &

Schnellmann, 2006; Cagnol & Chambard, 2010; Martin & Pognonec,

2010; Subramaniam & Unsicker, 2010; Teixeiro & Daniels, 2010)

have been reported for several cellular contexts. However, pro-

apoptotic effects were more often reported in lymphocytes and cells

of neuronal origin (Cagnol & Chambard, 2010). This is remarkable

since HEK293 cells have been identified as of neuronal origin (Shaw

et al, 2002).

As mentioned, HEK293ΔRAF1:ER cells in particular undergo

Caspase-8-mediated apoptosis upon constant activation with 4OHT.

However, the regulatory mechanism controlling Caspase-8 activity

in these cells remains to be determined (Cagnol et al, 2006). As it

was shown that Caspase-8 activation in these cells is independent

of Fas-associated death domain (FADD) signalling (Cagnol et al,

2006), it was later speculated that the observed Caspase-8 activa-

tion might be regulated via genes from the TNF receptor super

family (Cagnol & Chambard, 2010). In our data, TNFRSF12A has

been identified as an upregulated DEG with model-derived tran-

scriptional delay of 46 min and mRNA half-life of 183 min. Inde-

pendent of its delay, its long half-life enables it to translate ERK

signal duration into response amplitude. We therefore speculate

mRNA upregulation of TNFRSF12A could account for apoptosis in

HEK293ΔRAF1:ER cells exposed to prolonged ERK activation

(Fig EV7B).

Discussion

The idea of mRNA half-life being important for the kinetics of gene

induction is as old as the discovery of the messenger RNA itself

(Jacob & Monod, 1961). Yet only the advent of high-throughput

technologies allowed to test this hypothesis in a genome-wide

manner. Since that time, several studies have specifically demon-

strated that short-lived transcripts respond early and that long-lived

transcripts respond late to external stimuli. For example, the tempo-

ral order of gene expression was shown to be governed by mRNA

half-life upon H2O2-induced stress in yeast (Shalem et al, 2008),

upon NF-kB signalling in mouse 3T3 fibroblasts (Hao & Baltimore,

2009) and upon IL-2 signalling in murine T cells (Elkon et al, 2010).

Using reporter constructs, it was further revealed that timing of

mRNA dynamics is an intrinsic feature of the half-life encoded in

the 3’UTR sequence (Hao & Baltimore, 2009).

It has been noted that protein function correlates with mRNA

half-life, and in those mRNAs that need to be quickly regulated like

transcription factors and other regulatory proteins tend to be short-

lived (Wang et al, 2002; Yang et al, 2003; Legewie et al, 2008;

Schwanhäusser et al, 2011). In agreement with these observations,

we also found many transcription factors among the short-lived, fast

responding mRNAs.

Interestingly, immediate–late genes (ILGs) are enriched for genes

that are involved in positive regulation of apoptosis, which is the

cell fate for sustained ERK signalling in our model system, suggest-

ing that the mRNA half-life is important to functionally decode

signal duration. Very recently, the idea that mRNA half-life is

involved in signal decoding has been shown for signal frequency

decoding of p53 signalling (Porter et al, 2016). Here, short-lived

transcripts relay the oscillatory pattern of p53 signalling pulses to

response pulses, whereas only long-lived transcripts decode the

pulses by translating them into response amplitude (Porter et al,

2016). In this study, we demonstrated that this principle also trans-

fers to decoding of signal duration in ERK signalling.

Using a synthetic model system for ERK signalling combined

with computational modelling of transcript kinetics, we demon-

strated that mRNA longevity enables genes to translate signal dura-

tion into response amplitude. This is opposed to short-lived mRNAs

that only relay signal duration to response duration. In accordance

with previous research (Shalem et al, 2008; Hao & Baltimore, 2009;

Elkon et al, 2010; Porter et al, 2016), we find that mRNA half-life is

the dominating feature of expression kinetics for different input

stimuli. Among primary response genes, we introduced a new clus-

ter of immediate–late genes (ILGs) that makes use of this principle

to decode ERK signal duration. In particular, response amplitude of

ILGs precisely reflects ERK signal duration, as opposed to immedi-

ate–early genes (IEGs) that show no difference in response ampli-

tude. While ILGs share similar promoter characteristics with IEGs

and are also immediately induced, they differ by their mRNA half-

life. We found this principle to be conserved in two different model

systems for ERK signal duration (PC12 and MCF7), where long-

lived genes dominate decoding of signal duration to response

amplitude.

It is somewhat surprising that a simple model of gene expres-

sion that combines transcription and RNA processing into a single

step of mRNA synthesis describes the data with reasonable accu-

racy (when complemented with a delay parameter). Over the last

years, several mathematical frameworks with varying degree of

complexity have been presented to estimate the contribution of

processing, transcription and degradation rates from measured

RNA dynamics (Zeisel et al, 2011; Rabani et al, 2014; de Pretis

et al, 2015; Cheng et al, 2017). Two main conclusions arise from

these studies. First, ordinary differential equations with only few

parameters can accurately reflect mRNA dynamics. Secondly,

changes in mRNA expression are mainly governed by changes in

mRNA transcription, whereas processing and degradation rates are

only altered for a minority of regulated genes (4 and 10% of genes,

respectively) (Rabani et al, 2014). By the extension of a basic

model of gene expression with a simple delay parameter, we were

able to quantitatively dissect gene expression dynamics for

sustained signalling where peak expression cannot be defined.

Thereby, we identified temporal subclasses of PRGs (IEGs, DEGs

and ILGs) with distinct functions. However, the analysis also

shows that the gene expression parameters are continuous (Fig 3D

and E), and therefore decode duration to varying extend. It is

hence of great importance to view gene cluster definitions as a

heuristic to aid interpretation and to ease comparison of results

across literature.

In our study, we used a synthetic model system that mimics the

activation of the oncogene RAF. Oncogenic hyperactivation of

RAF1/BRAF is a pro-survival signal in many contexts. However,

many cell types activate fall-back programmes to oppose the overac-

tive signalling of RAF. Like DEGs, ILGs may serve as such a fall-

back module to counteract pro-survival signals sent out by
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sustained RAF activation. When benign tumours progress into

malignant ones, many negative feedback mechanisms that conferred

robustness before are lost (Friday et al, 2008). A deep understand-

ing of feedback modules or fail-safe mechanisms in the cluster of

ILGs that decode sustained oncogenic signalling is therefore crucial

to better understand what distinguishes proto-oncogenic from onco-

genic signalling.

Materials and Methods

Cell culture, microarray hybridisation and phosphoprotein assay

HEK293ΔRAF1:ER cells (Samuels et al, 1993; reviewed in

McMahon, 2001) were cultured in complete DMEM high glucose

without phenol red with 10% foetal calf serum supplemented with

antibiotics (pen/strep). Before stimulation, cells were starved in

serum-free medium overnight. Cells were stimulated with 4-hydroxy

tamoxifen (Sigma-Aldrich H7904; 0.5 lM), U0126 (20 lM), EGF

(25 ng/ml), FGF1 (50 ng/ml) or IGF (100 ng/ml). Translation was

inhibited with cycloheximide (10 lM), and transcription was inhib-

ited with actinomycin D (5 lM). RNA for microarray hybridisation

was isolated with TRIzol� reagent. cDNA was fragmented, labelled

and hybridised to Affymetrix Human Gene 1.0 ST Arrays. Phospho-

protein levels were assessed with Bio-Plex� (Bio-Rad) as described

previously (Klinger et al, 2013). Metabolic labelling of RNA with

200 lM 4SU 1 hour before harvesting followed by RNA-Seq was

performed as described previously (Schueler et al, 2014).

Identification of differentially expressed genes from
microarray data

Fluorescence intensities from scanned microarrays were processed

and analysed in R. Background correction, quantile normalisation,

probe set summarisation and log2 transformation were performed

with help of robust multichip average algorithm (RMA) (Irizarry,

2003). Probe sets were annotated with R package hugene10sttran-

scriptcluster.db. All probe sets mapping to a HUGO symbol identifier

were considered. For transcripts represented by multiple probe sets,

the probe set with highest mean expression across samples was

considered. Transcripts expressed below median expression in all

samples were excluded from analysis. Log2 fold changes were calcu-

lated with respect to mean expression in untreated samples (UT_1

and UT_3). UT_2 was excluded due to strong dissimilarity to UT_1

and UT_3 in cluster analysis of correlation values and putative

contamination. Log2 fold changes for independently obtained EGF,

and FGF time course data were calculated with respect to mean

expression in corresponding untreated samples (UT_1_n, UT_2_n,

UT_3_n). To account for expression level-dependent variations, an

empirical null model was based on replicates for 2-h 4OHT treat-

ment. For this, transcripts were ranked by their mean expression

across replicates and a moving average with window size k = 2,000

was calculated to serve as an expected variance measure for a given

expression level. Z-scores for each transcript pi in each sample j

were calculated accordingly:

zi;j ¼ pi;j � pi;UT

hsd pi;j�pi;UT
2

� �i

Genes exceeding an absolute z-score of 5.6 in 4OHT time course

data were considered regulated (1,490 upregulated, 2,037 downregu-

lated). This corresponded to an average false discovery rate (FDR) of

1% in 4OHT time course data. Here, false positives were estimated

by counting transcripts detected differentially expressed between

one replicate and the mean of the two other replicates of the 2-h

4OHT treatment samples. For all downstream analyses, 4OHT-regu-

lated genes were further filtered in two steps. First, regulated genes

were tested against a random set of unregulated genes (of the same

size) for their log2 fold change standard deviation (SDlog2fc) across

all samples. This was done to filter out a large fraction of

erroneously detected genes, which were unaltered across all

samples when the untreated condition was left out. Here, a SDlog2fc

cut-off was defined at FDR of 5% (253 upregulated, 234 down-

regulated genes remained). Secondly, genes induced in a non-

monotonic fashion that could not be fitted to our one-step model

were excluded from the analysis. All remaining genes (189 upregu-

lated, 146 downregulated) are referred to as differentially expressed

in the main text.

RNA-sequencing data generation and preprocessing

Total RNA was extracted with TRIzol. Labelled and unlabelled frac-

tions were separated as described previously (Baltz et al, 2012).

Sequencing libraries were prepared using Illumina TruSeq mRNA

Library Prep Kit v2 and sequenced on Illumina HiSeq 2000. Read

files were demultiplexed, and sequencing adapters were trimmed

using flexbar (Dodt et al, 2012). Reads were mapped with STAR

aligner v2.4.1 (Dobin et al, 2013) on hg19 using GENCODE v19 for

annotation and counted with subread featureCounts (Liao et al,

2014). Raw read counts were normalised with edgeR TMM

(Robinson et al, 2010) and eventually analysed with R package DTA

(Miller et al, 2011). The entire preprocessing pipeline was written in

Snakemake (Köster & Rahmann, 2012).

Identification of primary response genes

Differentially expressed genes were checked for significant z-scores

in CYHX samples. Differentially expressed genes also significantly

induced in any sample of parallel CYHX treatment (z-score > 5.6,

corresponding to FDR = 1%) were considered primary response

genes.

Modelling of mRNA dynamics

Gene expression data were fitted to complete and simple model for

mRNA dynamics as described in the main text using Nelder–Mead

method implemented in R package optimx. For a given expression

of a gene at time t, relative amplitude was deduced from gene-wise

parameter estimates of k0, k and c:

relative amplitude ðtÞ ¼ expression ðtÞ � k0
c

� ��
k0 þ k

c
� k0

c

� �

To obtain semi-quantitative log2 fold change predictions for

growth factor-induced gene expression, gene-wise fitted model

parameters and input functions for ERK-dependent transcription rate

k were fed to the complete model.
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Determination of mRNA half-lives based on transcription
blockage with actinomycin D and metabolic labelling
with 4-thiouridine

Half-life estimates based on ActD-mediated transcriptional shut-

down were derived from microarray gene expression time course

data (Fig EV1A). Since quantile normalisation assumes constant

total RNA levels across samples (Bar-Joseph et al, 2012), RMA was

performed without quantile normalisation for ActD samples.

Samples were instead normalised to median expression of 61 long-

lived mRNAs (t1/2 > 16 h) consistently identified in two published

data sets on human mRNA half-life (Yang et al, 2003; Friedel et al,

2009). Both time series were than fitted to an exponential decay

function of form MðtÞ ¼ M0 þ e�ct to infer decay rates c.
Half-life estimates based on metabolic labelling with 4SU

followed by RNA sequencing were calculated using all three frac-

tions of RNA, that is total RNA, labelled RNA (eluate) and unla-

belled RNA (flow-through). Dynamic transcriptome analysis (DTA)

was used for quantification (Miller et al, 2011).

Median, mean and standard deviation of half-lives for all

expressed genes were calculated from the three different data sets

(ActD ON, ActD OFF, 4SU) and are provided as supplementary data

(Table EV2).

Analysis of PC12 and MCF7 data

Published time course expression raw data on PC12 (Offermann

et al, 2016) and MCF7 (Saeki et al, 2009) were downloaded from

Gene Expression Omnibus (accession numbers: GSE74327 and

GSE13009). Data were preprocessed and analysed analogously to

HEK293ΔRAF1:ER microarray data presented in this work.

qRT–PCR primers, Western blot antibodies and flow cytometry

cDNA was synthesised using High-Capacity RNA-to-cDNATM Kit

(Applied Biosystems #4387406). qRT–PCR was performed using

Taqman gene expression assay (Thermo Fisher #4304437) with

following Taqman primers (Thermo Fisher): Hs01045540_g1 (ARC),

Hs00156548_m1 (CLU), Hs00610256_g1 (DUSP1), Hs01044001_m1

(DUSP6), Hs00152928_m1 (EGR1), Hs00166165_m1 (EGR2),

Hs00170630_m1 (FOS), Hs00171851_m1 (FOSB), Hs04187685_m1

(FOSL1), Hs00357891_s1 (JUNB), Hs00374226_m1 (NR4A1),

Hs00943178_g1 (PGK1), Hs00169585_m1 (PPP1R15A), Hs00153

133_m1 (PTGS2), Hs04334126_m1 (TFPI2), Hs00959047_g1

(TNFRSF12A), Hs00381614_m1 (ZCCHC12), Hs00185658_m1

(ZFP36).

Protein was extracted using Bio-Rad Cell Lysis Buffer (#171-

304006M). Concentration was determined using Thermo Fisher

Pierce BCA Protein Assay (#23228). 25–50 lg of purified protein

was used for blotting. Images were acquired using Li-Cor Odyssey

Scanner. Western blot antibodies were as follows: EGR1 (Santa Cruz

sc-110), FOS (Cell Signaling #2250), CLU (Santa Cruz sc-8354),

FOSL1 (Santa Cruz sc-376148).

For flow cytometry, cells were harvested 48 h after treatment

and fixed in 2% paraformaldehyde (PFA) for 10 min at RT. Cells

were permeabilised in methanol and incubated on ice for 30 min.

For immunostaining, cells were incubated for 1 h with Cleaved

Caspase-3 rabbit mAb (Cell Signaling #9602).

Data availability

Both microarray gene expression data and metabolic labelling RNA-

Seq data are accessible from gene expression omnibus (GEO) under

SuperSeries accession number GSE93611.

Expanded View for this article is available online.
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