Table of contents

1. Correlation of RNA-seq and exome-Seq
2. False discovery estimation of sc-CNV detection
3. Patient-specific SNVs
4. Versions of tools used in the analysis
5. Parameters used in the NGS processing pipelines

1. Correlation of RNA-seq and exome-seq

Figure S1: Distributions of GBM to normal-brain control single-cell expression ratios, across regions of copy number gain (exome-seq GBM/control ratio >1.3), neutral copy number, and loss (exome-seq GBM/control ratio<0.7). For each patient, read coverage of each gene was calculated for exome-seq and RNA-seq data. Genes covered by at least 100 reads by both methods were taken into account. Log2 ratios of GBM vs normal tissue across sliding windows comprising 200 genes was centered by the median (see Patel et al. 2014) and compared between RNA-seq and exome-seq. PCC stands for Pearson correlation coefficient. PCC was computed by comparing the vector of values obtained from the sliding window approach between single-cell RNA-seq and exome-seq.

2. False discovery rate estimation

Figure S2: Distributions of the false discovery rates of CNV calls on single cell RNA-seq data. A) Cross validation on the dataset used as a normal brain control in the manuscript. We randomly selected 10%
of the cells as test, and the remaining 90% as training set. For each sample in the test set we generated CNV calls on each of the patient’s altered regions defined by exome-seq. The false positive rate was calculated as: #positive CNV calls/#total CNV calls for each of the ten performed classification rounds. B) For each of the non-malignant cells from the dataset of Pollen et al. (2016) we generated CNV calls on each of the patient’s altered regions defined by exome-seq. Error rates were calculated as described in A). For each set sample in Pollen et al., false positive rates were calculated independently.

3. Patient specific SNVs

Figure S3 Patient-specific SNVs. IGV screenshots for alignments of every patient’s single cell RNA-seq (top), blood exome-seq (middle) and GBM exome-seq (bottom) at patient-specific germ-line mutations. Deviations from the reference (hg19) are indicated by color. VAF indicates the associated variant allele frequency.
Table S1 Table of patient-specific SNVs giving their position (chr:pos), affected gene, reference and variant allele, as well as zygosity.

4. Versions of languages and tools used for the analysis

Bcftools: 1.2
BedTools: 2.17.0
BWA: 0.7.12
DESeq2: 1.10.1
FeatureCounts: 1.4.4
GATK Toolkit: 2.6-5
HISAT: 2.0.3
Java: 1.6.0_27
Mutect: 1.0.27783
Pindel: 0.2.4t
Python: 2.7
R: 3.2.1
SnpEff: 3.3
Tophat: 2.0.1
Trim-Galore: 0.3.8

5. Program calls of the NGS processing pipeline

A) Exome-Seq processing

I Data pre-processing and alignment

Initially, data was processed using the bcbonextgen pipeline (https://bcbonextgen.readthedocs.io/en/latest/index.html). The pipeline carries out all necessary steps including
alignment, filtering of low-coverage regions to increase sensitivity, re-alignment around indels, and re-calibration of quality scores. Attached are the two configuration files for the pipeline.

Sample.yaml

```yaml
fc_date: 20150824
fc_name: C7MMPANXX
upload:
  dir: SF10345
details:
  - files: [SF10345_R1.fastq, SF10345_R2.fastq]
    description: SF10345
    analysis: 'variant'
    genome_build: GRCh37
    lane: Sample_SF10345
    algorithm:
      aligner: bwa
      trim_reads: false
      recalibrate: true
      realign: true
      variantcaller: [gatk, gatk-haplotype]
    coverage_interval: exome
    coverage_depth: high
    hybrid_bait: SeqCap_EZ_Exome_v3_capture_GRC37.target.bed
    hybrid_target: SeqCap_EZ_Exome_v3_capture_GRC37.target.bed
    variant_regions: SeqCap_EZ_Exome_v3_capture_GRC37.target.bed
    clinical_reporting: true
```

system.yaml

```yaml
galaxy_config:/sequencing/src/galaxy-central/universe_wsgi.ini
program:
  bowtie: bowtie
  samtools: samtools
tophat: tophat
```
bwa: bwa
ucsc_bigwig: wigToBigWig
fastqc: fastqc
pdflatex: pdflatex
barcode: barcode_sort_trim.py

algorithm:
 aligner: bowtie
 max_errors: 2
 num_cores: 1
 platform: illumina
 recalibrate: false
 snpcall: false
 java_memory: 5g
 upload_fastq: false
 save_diskspace: false
 quality_format: Standard
 bc_position: 5
 bc_allow_indels: false
 bc_mismatch: 1
 bc_read: 1
 trim_reads: true
 #sv_detection: hydra
 num_gatk_threads: 8

analysis:
 towig_script: bam_to_wiggle.py
 process_program: automated_initial_analysis.py
 upload_program: upload_to_galaxy.py
 worker_program: nextgen_analysis_server.py

distributed:
cluster_platform: lsf
platform_args: '-q long_parallel -n 4 -R "rusage=[1500m]"
num_workers: 2
rabbitmq_vhost: bionextgen

Configuration algorithm changes for specific pipelines.
custom_algorithms:
 variant:
 aligner: bwa
 recalibrate: true
 recalibration_plots: false
 snpcall: true
 coverage_depth: "high" # other options: low
 coverage_interval: "exome" # other options: genome, regional
 train_hapmap: variation/hapmap_3.3.vcf
 train_1000g_omni: variation/1000G_omni2.5.vcf
 train_indels: variation/Mills_and_1000G_gold_standard.indels.vcf
 java_memory: 4g
 dbsnp: variation/dbsnp_137.vcf

resources:
 log:
 dir: /sequencing/cron_pipeline/std/SF10345
 ucsc_bigwig:
 memory: 36g
 bwa:
 cores: 1
 cmd: bwa
 novoalign:
 cores: 1
 memory: 4G
II Somatic SNV calling
Using the alignment file from I, we performed mutation calls as follows:

#Make raw mutect calls
java -Xmx8g -jar mutect.jar --analysis_type MuTect --logging_level WARN --reference_sequence hg19.fa --intervals SeqCap_EZ_Exome_v3_hg19_primary_targets.bed --input_file:normal SF10345_normal.bam --input_file:tumor SF10345_tumor.bam -baq CALCULATE_AS_NECESSARY --out SF10345.snvs.raw.mutect.txt

#Estimate genotypes
java -Xmx8g -jar GenomeAnalysisTK.jar --analysis_type UnifiedGenotyper --genotype_likelihoods_model SNP --genotyping_mode DISCOVERY --input_file SF10345_normal.bam --input_file SF10345_tumor.bam --reference_sequence hg19.fa --dbsnp dbsnp_138.hg19.sorted.vcf -logging_level WARN --intervals SF10345.temp.bed -baq CALCULATE_AS_NECESSARY --noSLOD --standard_min_confidence_threshold_for_calling 30.0 --standard_min_confidence_threshold_for_emitting 10.0 --min_base_quality_score 20 --output_mode EMIT_VARIANTS_ONLY --out SF10345.UG.snps.raw.vcf

#Annotate variants
Filter annotated variants

```
java -Xmx8g -jar GenomeAnalysisTK.jar --analysis_type VariantFiltration --
reference_sequence hg19.fa --logging_level WARN --variant
SF10345.UG.snps.annotated.vcf -baq CALCULATE_AS_NECESSARY --filterExpression
"QD < 2.0" --filterName QDFilter --filterExpression "MQ < 40.0" --filterName
MQFilter --filterExpression "FS > 60.0" --filterName FSFilter --
filterExpression "HaplotypeScore > 13.0" --filterName HaplotypeScoreFilter --
filterExpression "MQRankSum < -12.5" --filterName MQRankSumFilter --
filterExpression "ReadPosRankSum < -8.0" --filterName ReadPosFilter --out
SF10345.UG.snps.filtered.vcf
```

III Somatic small Indel calling

Call somatic indels from BAM alignments of control and tumor exome-seq reads

Make raw pindel calls

```
pindel -f hg19.fa -i SF10345_pindel.cfg -c ALL -o SF10345.pindel -r FALSE -t FALSE
-l FALSE -k FALSE -T 12
```

Parse to vcf

```
pindel2vcf -P SF10345.pindel -r hg19.fa -R hg19 -d 20121031 -v SF10345.pindel.vcf -G
```

Filter raw calls based on coverage, alignment quality and supporting reads

```
python pindel_filter.py SF10345.pindel.vcf SF10345.pindel.filter
```

Only keep variants overlapping genes

```
bedtools intersect -a SF10345.pindel.filter -b
SeqCap_EZ_Exome_v3_hg19_primary_targets.bed -wa > SF10345.filter.intersect
```

Filter against DBSnP

```
perl annotate_variation.pl -filter -dbtype snp138 -buildver hg19
SF10345.filter.intersect humandb/
```

Annotate variants

```
perl annotate_variation.pl --geneanno --buildver hg19 --outfile
SF10345.filter.intersect.anno SF10345.filter.intersect/humandb/
```

IV Somatic CNV calling

Run ADTEx pipeline

```
python ADTEx.py --normal SF10345_normal.bam --tumor SF10345_tumor.bam --bed
SeqCap_EZ_Exome_v3_hg19_primary_targets.bed --out SF10345_CNVs.txt
```
B) Single cell RNA-Seq processing

I Read quantification

#Removed adapters and low quality bases
trim_galore -q 20 --nextera --length 20 -o ./tmp --paired C1_r1.fq C1_r2.fq

#Map reads to human genome with tophat2
tophat2 -o C1.bam -p 24 --transcriptome-index=transcriptome/refSeq --prefilter-multihits genome/hg19 C1_r1.fq C1_r2.fq

#Count uniquely mapped reads
featureCounts -T 18 -p -C -a genes_ercc.gtf -o SF10345_counts.txt *.bam

II SNV calling (Experimental code, output not used in manuscript)

#Determine origin for sets of reads in order to call genotypes
java -Xmx2g -jar picard.jar AddOrReplaceReadGroups I=C1.bam O=C1.flt.bam
SO=coordinate RGID=1 RGLB=1 RGPL=illumina RGPU=1 RGSM=1
VALIDATION_STRINGENCY=SILENT

#Remove PCR duplicates
java -Xmx2g -jar picard.jar MarkDuplicates I=C1.flt.bam O=C1.flt.rmdup.bam
CREATE_INDEX=true VALIDATION_STRINGENCY=SILENT M=C1.metrics
rm -f C1.flt.bam

#Order by genomic pos
java -Xmx2g -jar picard.jar ReorderSam I=C1.flt.rmdup.bam O=C1.flt.rmdup.reorder.bam
R=hg19.fa VALIDATION_STRINGENCY=SILENT
rm -f 1.flt.rmdup.bam

#Index sorted BAM
samtools index C1.flt.rmdup.reorder.bam

#Run GATK to creat two reads from one spliced read
rm -f C1.flt.rmdup.reorder.bam

#Index BAM file
samtools index C1.split.bam
Run GATK toolkit for SNV detection
java -Xmx2g -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R hg19.fa -I C1.split.bam
-dontUseSoftClippedBases -stand_call_conf 20.0 -stand_emit_conf 20.0 -o C1.vcf
rm -f C1.split.bam

Annotate variants
perl table_annovar.pl C1.vcf humandb/ -buildver hg19 -out C1_anno.vcf -remove -tempdir /scratch -protocol refGene,snp138NonFlagged,ljb26_all,cosmic70,gerp++gt2 -operation g,f,f,f,f -nastring . -vcfinput

Filter for only exonic SNVs not in DBSNP, having a strong SIFT score
bcftools view C1_anno.vcf | egrep "^Func.refGene=exonic|Func.refGene=UTR|cosmic70=.\"|grep PASS|grep 'snp138NonFlagged=\."|egrep 'SIFT_pred=D|SIFT_pred=P'>tmp1

bcftools view -h C1_anno.vcf >tmp.hdr
cat tmp.hdr tmp1>tmp2
bcftools view -o C1_anno.pmut.bcf -O b tmp2
bcftools index C1_anno.pmut.bcf
rm -f tmp*

C) Bulk population RNA-Seq processing

Read quantification

Map reads to human genome with hisat2
hisat2 -p 2 --rna-strandness R -x grch37_snp_tran/genome_snp_tran -U smp1.fastq.gz
| samtools view -bSu - | samtools sort - smp1

Count uniquely mapped reads
featureCounts -T 18 -s 2 -t exon -g gene_id -a genes.gtf -o counts.txt *.bam